今年.NET Conf China 2023技术大会,我给大家分享了 .NET应用国际化-AIGC智能翻译+代码生成的议题
.NET Conf China 2023分享-.NET应用国际化-AIGC智能翻译+代码生成
今天将详细的代码实现和大家分享一下。
一、前提准备
-
新建一个Console类的Project
-
引用SK的Nuget包,SK的最新Nuget包
dotnet add package Microsoft.SemanticKernel --version 1.4.0
<ItemGroup>
<PackageReference Include="Microsoft.SemanticKernel" Version="1.4.0" />
<PackageReference Include="Newtonsoft.Json" Version="13.0.3" />
</ItemGroup>
- 在Azure OpenAI Service中创建一个GPT4的服务,这个可能大家没有账号,那就先看代码如何实现吧
部署好GPT4模型后,可以拿到以下三个重要的值
Azure OpenAI Deployment Name
Azure OpenAI Endpoint
Azure OpenAI Key
二、编写翻译使用的Prompt
{{$input}}
请将上面的输入翻译为英文,不要返回任何解释说明,
请扮演一个美国电动汽车充电服务运营商(精通中文和英文),用户的输入数据是JSON格式,例如{"1":"充电站", "2":"充电桩"},
如果不是JSON格式,请返回无效的输入。
请使用以下专业术语进行翻译
{
"充电站":"Charging station",
"电站":"Charging station",
"场站":"Charging station",
"充电桩":"Charging point",
"充电终端":"Charging point",
"终端":"Charging point",
"电动汽车":"Electric Vehicle",
"直流快充":"DC Fast Charger",
"超级充电站":"Supercharger",
"智能充电":"Smart Charging",
"交流慢充":"AC Slow Charging"
}
翻译结果请以JSON格式返回,例如 {"1":"Charging station", "2":"Charging point"}
类似的还有葡萄牙下的翻译Prompt
{{$input}}
请将上面的输入翻译为葡萄牙语,不要返回任何解释说明,请扮演一个巴西的电动汽车充电服务运营商(精通葡萄牙语、中文和英文)
用户的输入数据是JSON格式,例如{"1":"充电站", "2":"充电桩"}, 如果不是JSON格式,请返回无效的输入
请使用以下专业术语进行翻译
{
"充电站": "Estação de carregamento",
"电站": "Estação de carregamento",
"场站": "Estação de carregamento",
"充电桩": "Ponto de carregamento",
"充电终端": "Ponto de carregamento",
"终端": "Ponto de carregamento",
"电动汽车": "Veículo Elétrico",
"直流快充": "Carregador Rápido DC",
"超级充电站": "Supercharger",
"智能充电": "Carregamento Inteligente",
"交流慢充": "Carregamento AC Lento"
}
请以JSON格式返回,例如 {"1":"Estação de carregamento", "2":"Ponto de carregamento"}
在项目工程下新建Plugins目录和TranslatePlugin子目录,同时新建Translator_en和Translator_pt等多个子目录
config.json文件下的内容如下:
{
"schema": 1,
"type": "completion",
"description": "Translate.",
"completion": {
"max_tokens": 2000,
"temperature": 0.5,
"top_p": 0.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0
},
"input": {
"parameters": [
{
"name": "input",
"description": "The user's input.",
"defaultValue": ""
}
]
}
}
三、Translator翻译类,实现文本多语言翻译
这个类主要实现将用户输入的文本(系统处理为JSON格式),翻译为指定的语言
using System.Runtime.InteropServices;
using Microsoft.SemanticKernel;
using Newtonsoft.Json;
namespace LLM_SK;
public class Translator
{
Kernel kernel;
public Translator(Kernel kernel)
{
this.kernel = kernel;
}
public IDictionary<int, string> Translate(IDictionary<int, string> textList, string language)
{
var pluginDirectory = Path.Combine(System.IO.Directory.GetCurrentDirectory(), "Plugins/TranslatePlugin");
var plugin = kernel.CreatePluginFromPromptDirectory(pluginDirectory, "Translator_" + language + "");
var json = JsonConvert.SerializeObject(textList);
if (!string.IsNullOrEmpty(json))
{
var output = kernel.InvokeAsync(plugin["Translator_" + language + ""], new() { ["input"] = json }).Result.ToString();
if (!string.IsNullOrWhiteSpace(output))
{
Console.WriteLine(output);
return JsonConvert.DeserializeObject<Dictionary<int, string>>(output);
}
}
return new Dictionary<int, string>();
}
}
这个类中构造函数中接收传入的Kernel对象,这个Kernel对象是指
Microsoft.SemanticKernel.Kernel
//
// Summary:
// Provides state for use throughout a Semantic Kernel workload.
//
// Remarks:
// An instance of Microsoft.SemanticKernel.Kernel is passed through to every function
// invocation and service call throughout the system, providing to each the ability
// to access shared state and services.
public sealed class Kernel
暂且理解为调用各类大模型的Kernel核心类,基于这个Kernel实例对象完成大模型的调用和交互
另外,上述代码中有个Prompt模板文件读取的操作。
var pluginDirectory = Path.Combine(System.IO.Directory.GetCurrentDirectory(), "Plugins/TranslatePlugin");
var plugin = kernel.CreatePluginFromPromptDirectory(pluginDirectory, "Translator_" + language + "");
从Plugins/TranslatePlugin目录下读取指定的KernelPlugin,例如Translator_en英语翻译插件和Translator_pt 葡萄牙翻译插件
var output = kernel.InvokeAsync(plugin["Translator_" + language + ""], new() { ["input"] = json }).Result.ToString();
调用KernelFunction方式实现GPT4大模型调用
//
// Summary:
// Invokes the Microsoft.SemanticKernel.KernelFunction.
//
// Parameters:
// function:
// The Microsoft.SemanticKernel.KernelFunction to invoke.
//
// arguments:
// The arguments to pass to the function's invocation, including any Microsoft.SemanticKernel.PromptExecutionSettings.
//
//
// cancellationToken:
// The System.Threading.CancellationToken to monitor for cancellation requests.
// The default is System.Threading.CancellationToken.None.
//
// Returns:
// The result of the function's execution.
//
// Exceptions:
// T:System.ArgumentNullException:
// function is null.
//
// T:Microsoft.SemanticKernel.KernelFunctionCanceledException:
// The Microsoft.SemanticKernel.KernelFunction's invocation was canceled.
//
// Remarks:
// This behaves identically to invoking the specified function with this Microsoft.SemanticKernel.Kernel
// as its Microsoft.SemanticKernel.Kernel argument.
public Task<FunctionResult> InvokeAsync(KernelFunction function, KernelArguments? arguments = null, CancellationToken cancellationToken = default(CancellationToken))
{
Verify.NotNull(function, "function");
return function.InvokeAsync(this, arguments, cancellationToken);
}
继续封装GPT4TranslateService,构造Microsoft.SemanticKernel.Kernel 类实例。
using System.Globalization;
using Microsoft.SemanticKernel;
namespace LLM_SK;
public class GPT4TranslateService
{
public IDictionary<int,string> Translate(IDictionary<int, string> texts, CultureInfo cultureInfo)
{
var kernel = BuildKernel();
var translator = new Translator(kernel);
return translator.Translate(texts, cultureInfo.TwoLetterISOLanguageName );
}
//私有方法,构造IKernel
private Kernel BuildKernel()
{
var builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
"xxxxgpt4", // Azure OpenAI Deployment Name
"https://****.openai.azure.com/", // Azure OpenAI Endpoint
"***************"); // Azure OpenAI Key
return builder.Build();
}
}
四、测试调用
这里我们设计了2种语言,英语和葡萄牙的文本翻译
var culture = new CultureInfo("en-US");
var translator = new GPT4TranslateService();
translator.Translate(new Dictionary<int, string>(){{ 1,"电站"}, {2,"终端不可用"},{3,"充电桩不可用"} ,
{4,"场站"},{5,"充电站暂未运营" }},culture);
culture = new CultureInfo("pt-BR");
translator.Translate(new Dictionary<int, string>(){{ 1,"电站"}, {2,"终端不可用"},{3,"充电桩不可用"} ,
{4,"场站"},{5,"充电站暂未运营" }},culture);
输出的结果
{"1":"Charging station","2":"Charging point unavailable","3":"Charging station unavailable","4":"Charging station","5":"Charging station not in operation yet"}
{"1":"Estação de carregamento","2":"Ponto de carregamento não está disponível","3":"Ponto de carregamento não está disponível","4":"Estação de carregamento","5":"A estação de carregamento ainda não está em operação"}
五、总结
以上是基于SemanticKernel和GPT4实现一个智能翻译服务的Demo和框架,大家可以基于这个示例继续完善,增加更多动态的数据和API调用,例如将JSON数据写入数据库
同时还可以记录翻译不稳定的异常,手工处理或者继续完善Prompt。
周国庆
2024/2/17