PHP中的数据存储 MySQL架构 (上)

年关将至,工作上也没什么大的安排。闲暇时间从一个PHP工程师的角度去学习一下微服务架构,毕竟谁都想进步嘛,哇哈哈


数据库类型总体概述

现在主流的存储技术和应用场景,主要分为关系型数据库,比如 MySQL、Oracle 等,Oracle 主要用于大型企业,Java用的比较多一些。然后是 NoSQL 数据库,NoSQL 数据库以 Redis、MongoDB 等为主,再然后是 NewSQL 数据库,这个用的比较少,不专门做讲解了。下面看一下应用场景,先看关系型数据库,它主要适合在有事务操作、需要联合查询、结构化比较确定的场景,比如保存用户基本信息、登录注册、还有保存企业信息、新闻信息等等,用的比较多的就是 MySQL 了。在下边是 NoSQL 数据库,先看一下 MongoDB,它适用于存储事务要求和复杂关联查询比较低的一些功能,比如快照的信息、日志信息、聊天信息等等,另外一个是 HBase,它具有高吞吐和低延迟的特点,主要应用在数据库非常庞大,并且准实时查询的场景,比如聊天 IM 等等。而本章重点讲解 MySQL 的高性能和高可用,以及它底层的一些实现的原理,比如说 B+Tree、MVCC 一致性、哈希算法等等。

数据库架构演化

在开始讲原理之前呢,先来看一下存储架构的演化。

先看 1.0 版本,这边是 PC 端和移动端,它直接访问 Web 服务,而 Web 服务下边访问一些应用的服务,比如说订单服务、用户服务、产品服务等等,而他们都打到一个单点的数据库上面。因为它是一个单点的 MySQL 服务器,所以当访问量数据量小的时候,1.0 版本这个架构是可以满足的。

再看上面这张图,它和上面是一样的,只不过简化了一下,它适合数量级别比较小的项目,优化比较好的话,也可以支持到千万级的数据量,它比较适合于企业网站和创业公司,包括好多大厂,其实在创业初期,都是这样简单粗暴的架构,它基本不会具有并发性和可用性,就是假如一个点挂了的话,那么整个服务都会挂掉,他的问题就是当数据量太大时,一台服务器就会承受不了,当读写操作太大时,一台服务器也承受不了,然后呢当 MySQL 挂掉之后,其实整个应用也就挂掉了,这是他的问题。那么针对于这个问题呢,就会有 2.0 的版本

上面都不用看,主要看一下数据库这里,大家发现有一个点变成了多个点,并且这里还有写读主从。这个就是呢,随着访问量的逐渐增大,读操作的远远大于写操作,其实大部分服务和网站,读操作都是远远大于写操作的,并且也需要考虑一台 MySQL 服务器挂掉之后,不要影响整个的服务,这个时候呢,就有了 2.0 版本的架构,他对 MySQL 做了主从复制,并且进行了读写分离,这样呢,就解决了上面提到的那三个问题。

相关推荐
康不坦丁8 分钟前
MySQL 的 order by 简化(使用列序号和列别名排序)
后端·mysql
wadesir21 分钟前
深入理解Rust静态生命周期(从零开始掌握‘static的奥秘)
开发语言·后端·rust
+VX:Fegn089526 分钟前
计算机毕业设计|基于springboot + vue零食商城管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·课程设计
哈哈哈笑什么34 分钟前
蜜雪冰城1分钱奶茶秒杀活动下,使用分片锁替代分布式锁去做秒杀系统
redis·分布式·后端
WZTTMoon1 小时前
Spring Boot 4.0 迁移核心注意点总结
java·spring boot·后端
寻kiki1 小时前
scala 函数类?
后端
疯狂的程序猴1 小时前
iOS App 混淆的真实世界指南,从构建到成品 IPA 的安全链路重塑
后端
bcbnb1 小时前
iOS 性能测试的工程化方法,构建从底层诊断到真机监控的多工具测试体系
后端
开心就好20251 小时前
iOS 上架 TestFlight 的真实流程复盘 从构建、上传到审核的团队协作方式
后端
小周在成长1 小时前
Java 泛型支持的类型
后端