PHP中的数据存储 MySQL架构 (上)

年关将至,工作上也没什么大的安排。闲暇时间从一个PHP工程师的角度去学习一下微服务架构,毕竟谁都想进步嘛,哇哈哈


数据库类型总体概述

现在主流的存储技术和应用场景,主要分为关系型数据库,比如 MySQL、Oracle 等,Oracle 主要用于大型企业,Java用的比较多一些。然后是 NoSQL 数据库,NoSQL 数据库以 Redis、MongoDB 等为主,再然后是 NewSQL 数据库,这个用的比较少,不专门做讲解了。下面看一下应用场景,先看关系型数据库,它主要适合在有事务操作、需要联合查询、结构化比较确定的场景,比如保存用户基本信息、登录注册、还有保存企业信息、新闻信息等等,用的比较多的就是 MySQL 了。在下边是 NoSQL 数据库,先看一下 MongoDB,它适用于存储事务要求和复杂关联查询比较低的一些功能,比如快照的信息、日志信息、聊天信息等等,另外一个是 HBase,它具有高吞吐和低延迟的特点,主要应用在数据库非常庞大,并且准实时查询的场景,比如聊天 IM 等等。而本章重点讲解 MySQL 的高性能和高可用,以及它底层的一些实现的原理,比如说 B+Tree、MVCC 一致性、哈希算法等等。

数据库架构演化

在开始讲原理之前呢,先来看一下存储架构的演化。

先看 1.0 版本,这边是 PC 端和移动端,它直接访问 Web 服务,而 Web 服务下边访问一些应用的服务,比如说订单服务、用户服务、产品服务等等,而他们都打到一个单点的数据库上面。因为它是一个单点的 MySQL 服务器,所以当访问量数据量小的时候,1.0 版本这个架构是可以满足的。

再看上面这张图,它和上面是一样的,只不过简化了一下,它适合数量级别比较小的项目,优化比较好的话,也可以支持到千万级的数据量,它比较适合于企业网站和创业公司,包括好多大厂,其实在创业初期,都是这样简单粗暴的架构,它基本不会具有并发性和可用性,就是假如一个点挂了的话,那么整个服务都会挂掉,他的问题就是当数据量太大时,一台服务器就会承受不了,当读写操作太大时,一台服务器也承受不了,然后呢当 MySQL 挂掉之后,其实整个应用也就挂掉了,这是他的问题。那么针对于这个问题呢,就会有 2.0 的版本

上面都不用看,主要看一下数据库这里,大家发现有一个点变成了多个点,并且这里还有写读主从。这个就是呢,随着访问量的逐渐增大,读操作的远远大于写操作,其实大部分服务和网站,读操作都是远远大于写操作的,并且也需要考虑一台 MySQL 服务器挂掉之后,不要影响整个的服务,这个时候呢,就有了 2.0 版本的架构,他对 MySQL 做了主从复制,并且进行了读写分离,这样呢,就解决了上面提到的那三个问题。

相关推荐
回家路上绕了弯22 分钟前
内容平台核心工程:最热帖子排行实现与用户互动三元组存储查询
后端·微服务
王元_SmallA32 分钟前
服务器公网IP、私网IP、弹性IP是什么?区别与应
java·后端
柠檬味拥抱2 小时前
Java 实现可靠的 WAV 音频拼接:从结构解析到完整可播放的高质量合并方案
后端
DyLatte2 小时前
AI时代的工作和成长
java·后端·程序员
Java水解2 小时前
初识MYSQL —— 基本查询
后端·mysql
用户497357337982 小时前
夏曹俊:C++零基础到工程实战,视频+课件完结
后端
databook2 小时前
manim边做边学--文字创建销毁的打字机效果
后端·python·动效
林太白2 小时前
八大数据结构
前端·后端·算法
林太白2 小时前
Rust14-字典数据
后端·rust
国思RDIF框架2 小时前
国思RDIF低代码快速开发框架 v6.2.2版本发布
前端·vue.js·后端