计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录

  • [1 前言](#1 前言)
  • [1 课题背景](#1 课题背景)
  • [2 技术原理和方法](#2 技术原理和方法)
  • [3 实例分割](#3 实例分割)
  • [4 实现效果](#4 实现效果)
  • [5 最后](#5 最后)

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习人体语义分割在弹幕防遮挡上的应用

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

弹幕是显示在视频上的评论,可以以滚动、停留甚至更多动作特效方式出现在视频上,是观看视频的人发送的简短评论。

各大视频网站目前都有弹幕功能,之家也于2020年5月正式上线视频弹幕功能,受到了广大网友的喜爱,大家在观看视频的同时,也能通过弹幕进行互动。

但密集的弹幕,遮挡视频画面,严重影响用户观看体验,如何解决?

查阅了相关视频网站,发现B站推出了一种蒙版弹幕技术,可以让弹幕自动躲避人形区域,达到弹幕不挡人的效果。

B站视频弹幕不挡人的效果

2 技术原理和方法

2.1基本原理

通过AI计算机视觉的技术,对视频内容进行分析,并将之前已经定义好的"视频主体内容"进行识别,生成蒙版并分发给客户端后,让客户端利用 CSS3

的特性进行渲染从而达成最终的效果。这样就形成了我们最终看到的,"不挡脸"弹幕效果。

实现方法就正如 PS

中的"蒙版"一样,实心区域允许,空白区域拒绝,从而达到弹幕不挡人的效果。而技术的核心就在蒙版的生成上,所以将这个功能称之为"蒙版弹幕"。

2.2 技术选型和方法

1、提取视频帧画面。对音视频的处理,大家一般都会想到FFmpeg组件,我们也是使用FFmpeg组件提取每帧的视频画面,使用的是PyAV组件,PyAV是FFmpeg封装,能够灵活的编解码视频和音频,并且支持Python常用的数据格式(如numpy)。

2、识别视频帧画面人像区域。解决方案:使用AI计算机视觉的实例分割技术,可以识别视频帧画面的人像区域。

3、AI框架:目前市面上的AI框架,主要以TensorFlow,PyTorch最流行。

  • TensorFlow :出身豪门的工业界霸主,由Google Brain团队研发。具有如下优点:支持多种编程语言;灵活的架构支持多GPU、分布式训练,跨平台运行能力强;自带 TensorBoard 组件,能可视化计算图,便于让用户实时监控观察训练过程;官方文档非常详尽,可查询资料众多;社区庞大,大量开发者活跃于此。
  • PyTorch :以动态图崛起的学术界宠儿,是基于 Torch 并由Facebook强力支持的python端的开源深度学习库。具有如下优点:简洁: PyTorch 在设计上更直观,追求尽量少的封装,建模过程透明,代码易于理解;易用:应用十分灵活,接口沿用 Torch ,契合用户思维,尽可能地让用户实现"所思即所得",不过多顾虑框架本 PyTorch 。原因: TensorFlow 入门难度较大,学习门槛高,系统设计过于复杂;而 PyTorch 入门难度低,上手快,而且提供的功能也非常易用,预训练模型也非常多。

4、实例分割技术:实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic

Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object

Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。

3 实例分割

简介

实例分割已成为机器视觉研究中比较重要、复杂和具有挑战性的领域之一。为了预测对象类标签和特定于像素的对象实例掩码,它对各种图像中出现的对象实例的不同类进行本地化。实例分割的目的主要是帮助机器人,自动驾驶,监视等。

实例分割同时利用目标检测和语义分割的结果,通过目标检测提供的目标最高置信度类别的索引,将语义分割中目标对应的Mask抽取出来。实例分割顾名思义,就是把一个类别里具体的一个个对象(具体的一个个例子)分割出来。

Mask R-CNN算法

本项目使用Mask R-CNN算法来进行图像实例分割。

网络结构图:

Mask R-CNN,一个相对简单和灵活的实例分割模型。该模型通过目标检测进行了实例分割,同时生成了高质量的掩模。通常,Faster

R-CNN有一个用于识别物体边界框的分支。Mask R-CNN并行添加了一个对象蒙版预测分支作为改进。使用FPN主干的head架构如图所示。

关键代码

python 复制代码
    ##利用不同的颜色为每个instance标注出mask,根据box的坐标在instance的周围画上矩形
    ##根据class_ids来寻找到对于的class_names。三个步骤中的任何一个都可以去掉,比如把mask部分
    ##去掉,那就只剩下box和label。同时可以筛选出class_ids从而显示制定类别的instance显示,下面
    ##这段就是用来显示人的,其实也就把人的id选出来,然后记录它们在输入ids中的相对位置,从而得到
    ##相对应的box与mask的准确顺序
    def display_instances_person(image, boxes, masks, class_ids, class_names,
                          scores=None, title="",
                          figsize=(16, 16), ax=None):
        """
        the funtion perform a role for displaying the persons who locate in the image
        boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
        masks: [height, width, num_instances]
        class_ids: [num_instances]
        class_names: list of class names of the dataset
        scores: (optional) confidence scores for each box
        figsize: (optional) the size of the image.
        """
        #compute the number of person
        temp = []
        for i, person in enumerate(class_ids):
            if person == 1:
                temp.append(i)
            else:
                pass
        person_number = len(temp)
        
        person_site = {}
        
        for i in range(person_number):
            person_site[i] = temp[i]


        NN = boxes.shape[0]   
        # Number of person'instances
        #N = boxes.shape[0]
        N = person_number
        if not N:
            print("\n*** No person to display *** \n")
        else:
           # assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
            pass
     
        if not ax:
            _, ax = plt.subplots(1, figsize=figsize)
     
        # Generate random colors
        colors = random_colors(NN)
     
        # Show area outside image boundaries.
        height, width = image.shape[:2]
        ax.set_ylim(height + 10, -10)
        ax.set_xlim(-10, width + 10)
        ax.axis('off')
        ax.set_title(title)
     
        masked_image = image.astype(np.uint32).copy()
        for a in range(N):
            
            color = colors[a]
            i = person_site[a]

            # Bounding box
            if not np.any(boxes[i]):
                # Skip this instance. Has no bbox. Likely lost in image cropping.
                continue
            y1, x1, y2, x2 = boxes[i]
            p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
                                  alpha=0.7, linestyle="dashed",
                                  edgecolor=color, facecolor='none')
            ax.add_patch(p)
     
            # Label
            class_id = class_ids[i]
            score = scores[i] if scores is not None else None
            label = class_names[class_id]
            x = random.randint(x1, (x1 + x2) // 2)
            caption = "{} {:.3f}".format(label, score) if score else label
            ax.text(x1, y1 + 8, caption,
                    color='w', size=11, backgroundcolor="none")
            
             # Mask
            mask = masks[:, :, i]
            masked_image = apply_mask(masked_image, mask, color)
     
            # Mask Polygon
            # Pad to ensure proper polygons for masks that touch image edges.
            padded_mask = np.zeros(
                (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
            padded_mask[1:-1, 1:-1] = mask
            contours = find_contours(padded_mask, 0.5)
            for verts in contours:
                # Subtract the padding and flip (y, x) to (x, y)
                verts = np.fliplr(verts) - 1
                p = Polygon(verts, facecolor="none", edgecolor=color)
                ax.add_patch(p)
           
        ax.imshow(masked_image.astype(np.uint8))
        plt.show()

4 实现效果

原视频

生成帧蒙板

最终效果

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关推荐
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
思则变8 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
漫谈网络8 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
try2find10 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
博观而约取11 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
精灵vector12 小时前
构建专家级SQL Agent交互
python·aigc·ai编程
Zonda要好好学习12 小时前
Python入门Day2
开发语言·python
Vertira12 小时前
pdf 合并 python实现(已解决)
前端·python·pdf
太凉13 小时前
Python之 sorted() 函数的基本语法
python
项目題供诗13 小时前
黑马python(二十四)
开发语言·python