【算法】约瑟夫环问题解析与实现

一、导言

约瑟夫环(Josephus Problem)是一个经典的数学问题,涉及一个编号为 1 到 n 的人围成一圈,从第一个人开始报数,报到某个数字 m 的人出列,然后再从下一个人开始报数,如此循环,直到所有人都出列。本篇博客将详细解析约瑟夫环问题,并使用 Python 实现算法。

二、问题分析

约瑟夫环问题中,有两个变量需要确定:人数 n 和报数的数字 m。当给定 n 和 m 后,需要确定最后留下的人的编号。例如,当 n=7,m=3 时,约瑟夫环问题的过程如下:

  • 1 2 3 4 5 6 7 (初始状态)
  • 1 2 4 5 6 7(第3个人出列,报数到3)
  • 1 2 4 5 7(第6个人出列,报数到3)
  • 1 4 5 7(第2个人出列,报数到3)
  • 1 4 5(第7个人出列,报数到3)
  • 1 4(第5个人出列,报数到3)
  • 4(第1个人出列,报数到3)

因此,最后留下的人的编号为 4。

三、解决方案

解决约瑟夫环问题的一种常见思路是使用循环链表。首先,我们可以创建一个循环链表,并将人的编号作为节点的值。然后,从第一个节点开始,依次报数,当报数到达 m 时,移除当前节点,继续下一个节点,直到只剩下一个节点为止。

下面是使用 Python 实现约瑟夫环问题的代码:

python 复制代码
"""
定义单向链表节点类
"""
class Node:
	def __init__(self, value):
		# 节点的值
		self.value = value
		# 指向下一个节点
		self.next = None

class CircularLinkedList:
	def __init__(self):
		self.head = None

	def append(self, value):
		"""
		append: 在链表末尾添加一个新节点,
		如果链表为空,则将头节点指向新节点,新节点的 next 指针指向头节点,
		否则遍历链表找到尾节点并将其 next 指向新节点,同时新节点的 next 指针指向头节点,以形成循环
		:param value:
		:return:
		"""
		new_node = Node(value)
		if not self.head:
			self.head = new_node
			self.head.next = self.head
		else:
			current = self.head
			# 循环找到最后一个节点
			while current.next != self.head:
				current = current.next
			current.next = new_node
			new_node.next = self.head

	def remove(self, value):
		"""
		从链表中移除一个值为 value 的节点
		遍历链表找到要移除的节点,并将其前一个节点的 next 指针跳过该节点,实现移除操作。
		:param value:
		:return:
		"""
		if not self.head:
			# 头节点为空执行
			# 如果链表为空,则结束方法
			return
		current = self.head
		prev = None
		while True:
			if current.value == value:
				if current == self.head:
					temp = self.head
					while temp.next != self.head:
						temp = temp.next
					temp.next = self.head.next
					self.head = self.head.next
				else:
					prev.next = current.next
				break
			prev = current
			current = current.next
			if current == self.head:
				break

	def get_survivor(self, m):
		"""
		根据约瑟夫环问题,找到最后留下的人的编号,其中参数 m 表示每次移除第 m 个人。
		使用循环遍历链表,每次移除第 m 个节点,直到只剩下一个节点为止,返回该节点的值。
		:param m:
		:return:
		"""
		current = self.head
		while current.next != current:
			count = 1
			while count != m:
				current = current.next
				count += 1
			self.remove(current.value)
			current = current.next
		return current.value

def josephus(n, m):
	linked_list = CircularLinkedList()
	for i in range(1, n+1):
		linked_list.append(i)
	return linked_list.get_survivor(m)

if __name__ == '__main__':
	n = 5
	m = 2
	survivor = josephus(n, m)
	print(f"The survivor's number is: {survivor}")
相关推荐
水蓝烟雨14 分钟前
[HOT 100] 2187. 完成旅途的最少时间
算法·hot 100
菜鸟一枚在这1 小时前
深度解析建造者模式:复杂对象构建的优雅之道
java·开发语言·算法
gyeolhada2 小时前
2025蓝桥杯JAVA编程题练习Day5
java·数据结构·算法·蓝桥杯
阿巴~阿巴~2 小时前
多源 BFS 算法详解:从原理到实现,高效解决多源最短路问题
开发语言·数据结构·c++·算法·宽度优先
给bug两拳2 小时前
Day9 25/2/22 SAT
算法
_Itachi__2 小时前
LeetCode 热题 100 73. 矩阵置零
算法·leetcode·矩阵
夏末秋也凉3 小时前
力扣-贪心-376 摆动序列
算法·leetcode
Orange--Lin3 小时前
【用deepseek和chatgpt做算法竞赛】——还得DeepSeek来 -Minimum Cost Trees_5
人工智能·算法·chatgpt
01_4 小时前
力扣hot100 ——搜索二维矩阵 || m+n复杂度优化解法
算法·leetcode·矩阵