【算法】约瑟夫环问题解析与实现

一、导言

约瑟夫环(Josephus Problem)是一个经典的数学问题,涉及一个编号为 1 到 n 的人围成一圈,从第一个人开始报数,报到某个数字 m 的人出列,然后再从下一个人开始报数,如此循环,直到所有人都出列。本篇博客将详细解析约瑟夫环问题,并使用 Python 实现算法。

二、问题分析

约瑟夫环问题中,有两个变量需要确定:人数 n 和报数的数字 m。当给定 n 和 m 后,需要确定最后留下的人的编号。例如,当 n=7,m=3 时,约瑟夫环问题的过程如下:

  • 1 2 3 4 5 6 7 (初始状态)
  • 1 2 4 5 6 7(第3个人出列,报数到3)
  • 1 2 4 5 7(第6个人出列,报数到3)
  • 1 4 5 7(第2个人出列,报数到3)
  • 1 4 5(第7个人出列,报数到3)
  • 1 4(第5个人出列,报数到3)
  • 4(第1个人出列,报数到3)

因此,最后留下的人的编号为 4。

三、解决方案

解决约瑟夫环问题的一种常见思路是使用循环链表。首先,我们可以创建一个循环链表,并将人的编号作为节点的值。然后,从第一个节点开始,依次报数,当报数到达 m 时,移除当前节点,继续下一个节点,直到只剩下一个节点为止。

下面是使用 Python 实现约瑟夫环问题的代码:

python 复制代码
"""
定义单向链表节点类
"""
class Node:
	def __init__(self, value):
		# 节点的值
		self.value = value
		# 指向下一个节点
		self.next = None

class CircularLinkedList:
	def __init__(self):
		self.head = None

	def append(self, value):
		"""
		append: 在链表末尾添加一个新节点,
		如果链表为空,则将头节点指向新节点,新节点的 next 指针指向头节点,
		否则遍历链表找到尾节点并将其 next 指向新节点,同时新节点的 next 指针指向头节点,以形成循环
		:param value:
		:return:
		"""
		new_node = Node(value)
		if not self.head:
			self.head = new_node
			self.head.next = self.head
		else:
			current = self.head
			# 循环找到最后一个节点
			while current.next != self.head:
				current = current.next
			current.next = new_node
			new_node.next = self.head

	def remove(self, value):
		"""
		从链表中移除一个值为 value 的节点
		遍历链表找到要移除的节点,并将其前一个节点的 next 指针跳过该节点,实现移除操作。
		:param value:
		:return:
		"""
		if not self.head:
			# 头节点为空执行
			# 如果链表为空,则结束方法
			return
		current = self.head
		prev = None
		while True:
			if current.value == value:
				if current == self.head:
					temp = self.head
					while temp.next != self.head:
						temp = temp.next
					temp.next = self.head.next
					self.head = self.head.next
				else:
					prev.next = current.next
				break
			prev = current
			current = current.next
			if current == self.head:
				break

	def get_survivor(self, m):
		"""
		根据约瑟夫环问题,找到最后留下的人的编号,其中参数 m 表示每次移除第 m 个人。
		使用循环遍历链表,每次移除第 m 个节点,直到只剩下一个节点为止,返回该节点的值。
		:param m:
		:return:
		"""
		current = self.head
		while current.next != current:
			count = 1
			while count != m:
				current = current.next
				count += 1
			self.remove(current.value)
			current = current.next
		return current.value

def josephus(n, m):
	linked_list = CircularLinkedList()
	for i in range(1, n+1):
		linked_list.append(i)
	return linked_list.get_survivor(m)

if __name__ == '__main__':
	n = 5
	m = 2
	survivor = josephus(n, m)
	print(f"The survivor's number is: {survivor}")
相关推荐
YGGP5 小时前
【Golang】LeetCode 64. 最小路径和
算法·leetcode
古城小栈6 小时前
Rust变量设计核心:默认不可变与mut显式可变的深层逻辑
算法·rust
电商API&Tina6 小时前
跨境电商 API 对接指南:亚马逊 + 速卖通接口调用全流程
大数据·服务器·数据库·python·算法·json·图搜索算法
LYFlied6 小时前
【每日算法】LeetCode 1143. 最长公共子序列
前端·算法·leetcode·职场和发展·动态规划
长安er8 小时前
LeetCode 20/155/394/739/84/42/单调栈核心原理与经典题型全解析
数据结构·算法·leetcode·动态规划·
MarkHD8 小时前
智能体在车联网中的应用:第28天 深度强化学习实战:从原理到实现——掌握近端策略优化(PPO)算法
算法
能源系统预测和优化研究8 小时前
【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
大数据·算法
yoke菜籽8 小时前
LeetCode——三指针
算法·leetcode·职场和发展
小高不明9 小时前
前缀和一维/二维-复习篇
开发语言·算法
bin91539 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具