phaseDNN文章解读

文章DOI : https://doi.org/10.48550/arXiv.1905.01389

作者是 Southern Methodist University 的Wei Cai 教授

A Parallel Phase Shift Deep Neural Network for Adaptive Wideband Learning

一种并行移相深度神经网络来自适应学习宽带频率信号

20190514

核心思想:通过相变技术把高频部分转化为低频部分,这样便可以提高神经网络训练过程中网络的收敛速度

感觉这篇文章的信息好少,搜不到多少资料。

摘要

PhaseDNN利用了许多DNN首先在低频范围内实现收敛的事实(这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,或知乎https://zhuanlan.zhihu.com/p/571517635),因此,对于更高频率范围,并行地构建和训练一系列中等大小的DNN。

借助于频域中的相移,通过对训练数据进行简单的相位因子乘法来实现,序列中的每个DNN将被训练为在特定范围内近似目标函数的较高频率内容。

由于相移,每个DNN都达到了在低频范围内的收敛速度。因此,PhaseDNN系统能够将宽带频率学习转换为低频学习,从而允许通过频率自适应训练对宽带高维函数进行统一学习。数值结果表明,PhaseDNN能够从低频到高频均匀地学习目标函数的信息。

具体实现过程

背景知识​

许志钦:​

深度神经网络的频率原则: DNN首先在低频范围内实现收敛​

这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,​

或知乎https://zhuanlan.zhihu.com/p/571517635​

应用

多种频率的信号叠加的波/高频波,使用此相移方法,把高频转为低频,实现快速收敛。​

例如:多频叠加的信号,比如可能:音频分类、时序预测

GitHub

相关推荐
Salt_07282 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
Yeats_Liao2 小时前
MindSpore开发之路(十):构建卷积神经网络(CNN):核心层详解
人工智能·神经网络·cnn
Coovally AI模型快速验证4 小时前
YOLO11算法深度解析:四大工业场景实战,开源数据集助力AI质检落地
人工智能·神经网络·算法·计算机视觉·无人机
一瞬祈望4 小时前
ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
人工智能·python·神经网络·数据挖掘
雍凉明月夜5 小时前
深度学习网络笔记Ⅰ(CNN)
网络·笔记·深度学习·神经网络·学习·cnn
python机器学习ML7 小时前
论文复现-以动物图像分类为例进行多模型性能对比分析
人工智能·python·神经网络·机器学习·计算机视觉·scikit-learn·sklearn
诸葛务农7 小时前
神经网络信息编码技术:与人脑信息处理的差距及超越的替在优势和可能(下)
人工智能·神经网络
雪花desu8 小时前
大模型应用评估—— 从 BLEU 到 Agent 综合评价
人工智能·深度学习·神经网络·语言模型
诸葛务农11 小时前
神经网络信息编码技术:与人脑信息处理的差距及超越的替在优势和可能(上)
人工智能·深度学习·神经网络
oscar99911 小时前
神经网络前向传播:AI的“消化系统”全解析
人工智能·深度学习·神经网络