phaseDNN文章解读

文章DOI : https://doi.org/10.48550/arXiv.1905.01389

作者是 Southern Methodist University 的Wei Cai 教授

A Parallel Phase Shift Deep Neural Network for Adaptive Wideband Learning

一种并行移相深度神经网络来自适应学习宽带频率信号

20190514

核心思想:通过相变技术把高频部分转化为低频部分,这样便可以提高神经网络训练过程中网络的收敛速度

感觉这篇文章的信息好少,搜不到多少资料。

摘要

PhaseDNN利用了许多DNN首先在低频范围内实现收敛的事实(这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,或知乎https://zhuanlan.zhihu.com/p/571517635),因此,对于更高频率范围,并行地构建和训练一系列中等大小的DNN。

借助于频域中的相移,通过对训练数据进行简单的相位因子乘法来实现,序列中的每个DNN将被训练为在特定范围内近似目标函数的较高频率内容。

由于相移,每个DNN都达到了在低频范围内的收敛速度。因此,PhaseDNN系统能够将宽带频率学习转换为低频学习,从而允许通过频率自适应训练对宽带高维函数进行统一学习。数值结果表明,PhaseDNN能够从低频到高频均匀地学习目标函数的信息。

具体实现过程

背景知识​

许志钦:​

深度神经网络的频率原则: DNN首先在低频范围内实现收敛​

这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,​

或知乎https://zhuanlan.zhihu.com/p/571517635​

应用

多种频率的信号叠加的波/高频波,使用此相移方法,把高频转为低频,实现快速收敛。​

例如:多频叠加的信号,比如可能:音频分类、时序预测

GitHub

相关推荐
qzhqbb9 小时前
神经网络 - 卷积神经网络
神经网络·计算机视觉·cnn
Sunhen_Qiletian15 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
LHZSMASH!16 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
Dfreedom.16 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数
大明者省16 小时前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习
qzhqbb17 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
高洁0118 小时前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
无风听海20 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
嵌入式-老费1 天前
自己动手写深度学习框架(神经网络的引入)
人工智能·深度学习·神经网络
无风听海1 天前
神经网络之向量空间的正交坐标系的数量
人工智能·深度学习·神经网络