phaseDNN文章解读

文章DOI : https://doi.org/10.48550/arXiv.1905.01389

作者是 Southern Methodist University 的Wei Cai 教授

A Parallel Phase Shift Deep Neural Network for Adaptive Wideband Learning

一种并行移相深度神经网络来自适应学习宽带频率信号

20190514

核心思想:通过相变技术把高频部分转化为低频部分,这样便可以提高神经网络训练过程中网络的收敛速度

感觉这篇文章的信息好少,搜不到多少资料。

摘要

PhaseDNN利用了许多DNN首先在低频范围内实现收敛的事实(这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,或知乎https://zhuanlan.zhihu.com/p/571517635),因此,对于更高频率范围,并行地构建和训练一系列中等大小的DNN。

借助于频域中的相移,通过对训练数据进行简单的相位因子乘法来实现,序列中的每个DNN将被训练为在特定范围内近似目标函数的较高频率内容。

由于相移,每个DNN都达到了在低频范围内的收敛速度。因此,PhaseDNN系统能够将宽带频率学习转换为低频学习,从而允许通过频率自适应训练对宽带高维函数进行统一学习。数值结果表明,PhaseDNN能够从低频到高频均匀地学习目标函数的信息。

具体实现过程

背景知识​

许志钦:​

深度神经网络的频率原则: DNN首先在低频范围内实现收敛​

这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,​

或知乎https://zhuanlan.zhihu.com/p/571517635​

应用

多种频率的信号叠加的波/高频波,使用此相移方法,把高频转为低频,实现快速收敛。​

例如:多频叠加的信号,比如可能:音频分类、时序预测

GitHub

相关推荐
Ai173163915791 天前
2025.11.28国产AI计算卡参数信息汇总
服务器·图像处理·人工智能·神经网络·机器学习·视觉检测·transformer
陈辛chenxin1 天前
【大数据技术07】分类和聚类算法
神经网络·决策树·分类·聚类·分类算法
编程小白_正在努力中2 天前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海2 天前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
东皇太星2 天前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
强化学习与机器人控制仿真3 天前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习
海边夕阳20063 天前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
高洁014 天前
【无标具身智能-多任务与元学习】
神经网络·算法·aigc·transformer·知识图谱
云雾J视界4 天前
AI芯片设计实战:用Verilog高级综合技术优化神经网络加速器功耗与性能
深度学习·神经网络·verilog·nvidia·ai芯片·卷积加速器
水月wwww5 天前
深度学习——神经网络
人工智能·深度学习·神经网络