phaseDNN文章解读

文章DOI : https://doi.org/10.48550/arXiv.1905.01389

作者是 Southern Methodist University 的Wei Cai 教授

A Parallel Phase Shift Deep Neural Network for Adaptive Wideband Learning

一种并行移相深度神经网络来自适应学习宽带频率信号

20190514

核心思想:通过相变技术把高频部分转化为低频部分,这样便可以提高神经网络训练过程中网络的收敛速度

感觉这篇文章的信息好少,搜不到多少资料。

摘要

PhaseDNN利用了许多DNN首先在低频范围内实现收敛的事实(这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,或知乎https://zhuanlan.zhihu.com/p/571517635),因此,对于更高频率范围,并行地构建和训练一系列中等大小的DNN。

借助于频域中的相移,通过对训练数据进行简单的相位因子乘法来实现,序列中的每个DNN将被训练为在特定范围内近似目标函数的较高频率内容。

由于相移,每个DNN都达到了在低频范围内的收敛速度。因此,PhaseDNN系统能够将宽带频率学习转换为低频学习,从而允许通过频率自适应训练对宽带高维函数进行统一学习。数值结果表明,PhaseDNN能够从低频到高频均匀地学习目标函数的信息。

具体实现过程

背景知识​

许志钦:​

深度神经网络的频率原则: DNN首先在低频范围内实现收敛​

这个可参考许志钦老师的主页 https://ins.sjtu.edu.cn/people/xuzhiqin/,​

或知乎https://zhuanlan.zhihu.com/p/571517635​

应用

多种频率的信号叠加的波/高频波,使用此相移方法,把高频转为低频,实现快速收敛。​

例如:多频叠加的信号,比如可能:音频分类、时序预测

GitHub

相关推荐
IT古董5 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
点我头像干啥13 小时前
用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
pytorch·深度学习·神经网络
IT古董13 小时前
【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(2)神经网络整体结构
pytorch·神经网络·算法
机器学习之心17 小时前
经典灰狼算法+编码器+双向长短期记忆神经网络,GWO-Transformer-BiLSTM多变量回归预测,作者:机器学习之心!
神经网络·bilstm·gwo-transformer
weisian1511 天前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
IT古董10 天前
【第二章:机器学习与神经网络概述】02.降维算法理论与实践-(1)主成分分析(Principal Component Analysis, PCA)
神经网络·算法·机器学习
丶Darling.10 天前
深度学习与神经网络 | 邱锡鹏 | 第五章学习笔记 卷积神经网络
深度学习·神经网络·学习
丶Darling.11 天前
深度学习与神经网络 | 邱锡鹏 | 第七章学习笔记 网络优化与正则化
深度学习·神经网络·学习
丶Darling.11 天前
深度学习与神经网络 | 邱锡鹏 | 第六章学习笔记 循环神经网络
深度学习·神经网络·学习