Zookeeper实现分布式锁

Zookeeper实现分布式锁案例

在分布式场景下,单机的锁已经无法实现对并发的控制,我们需要专门用分布式锁来在分布式环境下实现对多个进程能够有序的访问资源。

首先需要确保有hadoop102,hadoop103,hadoop104三台虚拟机并且都安装成功且配置成功了zookeeper。

原生 Zookeeper 实现分布式锁案例

编写DistributedLock实现分布式锁的简易写法。上面配置zookeeper连接相关的参数可以抽取出,主要在于分布式锁的底层实现。

java 复制代码
public class DistributedLock {

    // zookeeper server 列表
    private String connectString =
            "hadoop102:2181,hadoop103:2181,hadoop104:2181";
    // 超时时间
    private int sessionTimeout = 2000;
    private ZooKeeper zk;
    private String rootNode = "locks";
    private String subNode = "seq-";
    // 当前 client 等待的子节点
    private String waitPath;

    //ZooKeeper 连接
    private CountDownLatch connectLatch = new CountDownLatch(1);
    //ZooKeeper 节点等待
    private CountDownLatch waitLatch = new CountDownLatch(1);
    // 当前 client 创建的子节点
    private String currentNode;


    // 和 zk 服务建立连接,并创建根节点
    public DistributedLock() throws IOException,
            InterruptedException, KeeperException {
        zk= new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
// 连接建立时, 打开 latch, 唤醒 wait 在该 latch 上的线程
                if (event.getState() ==
                        Event.KeeperState.SyncConnected) {
                    connectLatch.countDown();
                }
                // 发生了 waitPath 的删除事件
                if (event.getType() ==
                        Event.EventType.NodeDeleted && event.getPath().equals(waitPath))
                {
                    waitLatch.countDown();
                }

            }

            });
        connectLatch.await();

        //获取根节点状态
        Stat stat = zk.exists("/" + rootNode, false);
        //如果根节点不存在,则创建根节点,根节点类型为永久节点
        if (stat == null) {
            System.out.println("根节点不存在");
            zk.create("/" + rootNode, new byte[0],
                    ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
        }

    }

    // 加锁方法
    public void zkLock() {
        try {
            //在根节点下创建临时顺序节点,返回值为创建的节点路径
            currentNode = zk.create("/" + rootNode + "/" + subNode,
                    null, ZooDefs.Ids.OPEN_ACL_UNSAFE,
                    CreateMode.EPHEMERAL_SEQUENTIAL);
            // wait 一小会, 让结果更清晰一些
            Thread.sleep(10);
            // 注意, 没有必要监听"/locks"的子节点的变化情况
            List<String> childrenNodes = zk.getChildren("/" +
                    rootNode, false);
            // 列表中只有一个子节点, 那肯定就是 currentNode , 说明client 获得锁
            if (childrenNodes.size() == 1) {
                return;
            } else {
                //对根节点下的所有临时顺序节点进行从小到大排序
                Collections.sort(childrenNodes);
                //当前节点名称
                String thisNode = currentNode.substring(("/" +
                        rootNode + "/").length());
                //获取当前节点的位置
                int index = childrenNodes.indexOf(thisNode);
                if (index == -1) {
                    System.out.println("数据异常");
                } else if (index == 0) {
                    // index == 0, 说明 thisNode 在列表中最小, 当前client 获得锁
                    return;
                } else {
                    // 获得排名比 currentNode 前 1 位的节点
                    this.waitPath = "/" + rootNode + "/" +
                            childrenNodes.get(index - 1);
                    // 在 waitPath 上注册监听器, 当 waitPath 被删除时,zookeeper 会回调监听器的 process 方法
                    zk.getData(waitPath, true, new Stat());
                    //进入等待锁状态
                    waitLatch.await();
                    return;
                }
            }
        } catch (KeeperException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

    }


    // 解锁方法
    public void zkUnlock() {
        try {
            zk.delete(this.currentNode, -1);
        } catch (InterruptedException | KeeperException e) {
            e.printStackTrace();
        }
    }


}

编写测试类

java 复制代码
public class DistributedLockTest {

    public static void main(String[] args) throws
            InterruptedException, IOException, KeeperException {
        // 创建分布式锁 1
        final DistributedLock lock1 = new DistributedLock();
        // 创建分布式锁 2
        final DistributedLock lock2 = new DistributedLock();
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock1.zkLock();
                    System.out.println("线程 1 获取锁");
                    Thread.sleep(5 * 1000);
                    lock1.zkUnlock();
                    System.out.println("线程 1 释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock2.zkLock();
                    System.out.println("线程 2 获取锁");
                    Thread.sleep(5 * 1000);
                    lock2.zkUnlock();
                    System.out.println("线程 2 释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

zookeeper分布式锁实现流程:

  1. 创建一个ZooKeeper节点作为锁的根节点,例如 /locks。

  2. 当一个线程需要获取锁时,它在锁的根节点下创建一个临时顺序节点,例如 /locks/lock-0001,并尝试获取锁。

  3. 线程获取锁的过程是通过检查它创建的节点是否是锁节点下最小的节点,如果是,则表示该线程获得了锁;否则,线程监听它创建节点的前一个节点,等待前一个节点的释放。

  4. 当线程释放锁时,它删除自己创建的节点。

这种方式实现的分布式锁具有一定的可靠性和性能,但需要确保ZooKeeper集群的可用性和性能足够好。同时,需要处理连接断开、会话过期等异常情况,以保证分布式锁的正确性。此外,还可以使用ZooKeeper的超时机制来处理死锁等问题。

Curator 框架实现分布式锁案例

原生的 Java API 开发存在的问题

(1)会话连接是异步的,需要自己去处理。比如使用 CountDownLatch

(2)Watch 需要重复注册,不然就不能生效

(3)开发的复杂性还是比较高的

(4)不支持多节点删除和创建。需要自己去递归

通过Curator框架能帮我们解决上述问题。

导入依赖

xml 复制代码
<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-framework</artifactId>
 <version>4.3.0</version>
</dependency>
<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-recipes</artifactId>
 <version>4.3.0</version>
</dependency>
<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-client</artifactId>
 <version>4.3.0</version>
</dependency>

编写代码

java 复制代码
public class CuratorLockTest {

    private String rootNode = "/locks";

    // zookeeper server 列表
    private String connectString =
            "hadoop102:2181,hadoop103:2181,hadoop104:2181";
    // connection 超时时间
    private int connectionTimeout = 2000;
    // session 超时时间
    private int sessionTimeout = 2000;

    public static void main(String[] args) {
        new CuratorLockTest().test();
    }
    // 测试
    private void test() {
        // 创建分布式锁 1
        final InterProcessLock lock1 = new
                InterProcessMutex(getCuratorFramework(), rootNode);
        // 创建分布式锁 2
        final InterProcessLock lock2 = new
                InterProcessMutex(getCuratorFramework(), rootNode);
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock1.acquire();
                    System.out.println("线程 1 获取锁");
                    // 测试锁重入
                    lock1.acquire();
                    System.out.println("线程 1 再次获取锁");
                    Thread.sleep(5 * 1000);
                    lock1.release();
                    System.out.println("线程 1 释放锁");
                    lock1.release();
                    System.out.println("线程 1 再次释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock2.acquire();
                    System.out.println("线程 2 获取锁");
                    // 测试锁重入
                    lock2.acquire();
                    System.out.println("线程 2 再次获取锁");
                    Thread.sleep(5 * 1000);
                    lock2.release();
                    System.out.println("线程 2 释放锁");
                    lock2.release();
                    System.out.println("线程 2 再次释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
    // 分布式锁初始化
    public CuratorFramework getCuratorFramework (){
        //重试策略,初试时间 3 秒,重试 3 次
        RetryPolicy policy = new ExponentialBackoffRetry(3000, 3);
        //通过工厂创建 Curator
        CuratorFramework client =
                CuratorFrameworkFactory.builder()
                        .connectString(connectString)
                        .connectionTimeoutMs(connectionTimeout)
                        .sessionTimeoutMs(sessionTimeout)
                        .retryPolicy(policy).build();
        //开启连接
        client.start();
        System.out.println("zookeeper 初始化完成...");
        return client;
    }

}

注:curator 的几种锁方案 :

  • 1、InterProcessMutex:分布式可重入排它锁
  • 2、InterProcessSemaphoreMutex:分布式排它锁
  • 3、InterProcessReadWriteLock:分布式读写锁
相关推荐
李昊哲小课5 分钟前
deepin 安装 kafka
大数据·分布式·zookeeper·数据分析·kafka
Kobebryant-Manba12 分钟前
zookeeper+kafka的windows下安装
分布式·zookeeper·kafka
_oP_i7 小时前
Pinpoint 是一个开源的分布式追踪系统
java·分布式·开源
攻心的子乐9 小时前
Kafka可视化工具 Offset Explorer (以前叫Kafka Tool)
分布式·kafka
小林想被监督学习10 小时前
RabbitMQ 的7种工作模式
分布式·rabbitmq
初晴~11 小时前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
有一个好名字11 小时前
zookeeper分布式锁模拟12306买票
分布式·zookeeper·云原生
Anna_Tong14 小时前
云原生大数据计算服务 MaxCompute 是什么?
大数据·阿里云·云原生·maxcompute·odps
运维&陈同学14 小时前
【模块一】kubernetes容器编排进阶实战之基于velero及minio实现etcd数据备份与恢复
数据库·后端·云原生·容器·kubernetes·etcd·minio·velero
yukai0800815 小时前
【最后203篇系列】002 - 两个小坑(容器时间错误和kafka模块报错
分布式·kafka