Flink算子通用状态应用测试样例

Flink算子通用状态应用测试样例

1. 获取Flink执行环境
c 复制代码
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
    

2. 创建数据源,生成随机数据
c 复制代码
        DataStream<Map<String, String>> source = env.addSource(new SourceFunction<Map<String, String>>() {
            @Override
            public void run(SourceContext<Map<String, String>> ctx) throws Exception {
                while (true) {
                    HashMap<String, String> hashMap = new HashMap<>();
                    hashMap.put("ID", new Random().nextInt(3) + 1 + "");
                    hashMap.put("AMT", "1");
                    System.out.println("------");
                    System.out.println("生产数据:" + hashMap);
                    ctx.collect(hashMap);
                    Thread.sleep(1000);
                }
            }
            @Override
            public void cancel() {}
        });

3. 按照ID和星期几进行分组
c 复制代码
        KeyedStream<Map<String, String>, String> keyedStream = source.keyBy(new KeySelector<Map<String, String>, String>() {
            @Override
            public String getKey(Map<String, String> value) throws Exception {
                return value.get("ID") + LocalDate.now().getDayOfWeek();
            }
        });

4. 处理函数,实现状态初始化和元素处理逻辑
c 复制代码
        SingleOutputStreamOperator<Map<String, String>> process = keyedStream.process(new KeyedProcessFunction<String, Map<String, String>, Map<String, String>>() {
            private AggregatingState<Map<String, String>, Map<String, String>> aggState;

            @Override
            public void open(Configuration parameters) throws Exception {
                // 配置状态的TTL
                StateTtlConfig ttlConfig = StateTtlConfig
                        .newBuilder(Time.days(1))
                        .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) // 仅在创建和写入时清除,另一个读和写时清除
                        .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired) // 不退回过期值
                        .build();
                // 初始化状态
                AggregatingStateDescriptor<Map<String, String>, Map<String, String>, Map<String, String>> aggRes = new AggregatingStateDescriptor<>("aggRes", new AggregateFunction<Map<String, String>, Map<String, String>, Map<String, String>>() {
                    @Override
                    public Map<String, String> createAccumulator() {
                        return new HashMap<>();
                    }

                    @Override
                    public Map<String, String> add(Map<String, String> in, Map<String, String> acc) {
                        String amt = acc.get("AMT");
                        if (amt == null) {
                            acc.put("ID", in.get("ID"));
                            acc.put("AMT", in.get("AMT"));
                        } else {
                            acc.put("AMT", Integer.valueOf(in.get("AMT")) + Integer.valueOf(amt) + "");
                        }
                        return acc;
                    }

                    @Override
                    public Map<String, String> getResult(Map<String, String> acc) {
                        return acc;
                    }

                    @Override
                    public Map<String, String> merge(Map<String, String> a, Map<String, String> b) {
                        return null;
                    }
                }, TypeInformation.of(new TypeHint<Map<String, String>>() {
                }));
                aggRes.enableTimeToLive(ttlConfig);
                aggState = getRuntimeContext().getAggregatingState(aggRes);
            }

            @Override
            public void processElement(Map<String, String> value, KeyedProcessFunction<String, Map<String, String>, Map<String, String>>.Context ctx, Collector<Map<String, String>> out) throws Exception {
                aggState.add(value);
                out.collect(aggState.get());
            }
        });

5. 打印聚合结果
c 复制代码
        process.map((MapFunction<Map<String, String>, Object>) value -> {
            System.out.println("聚合结果:" + value);
            return null;
        });

6. 执行作业
c 复制代码
        env.execute("Flink Common State Test");

7. 执行结果
c 复制代码
------
生产数据:{AMT=1, ID=2}
聚合结果:{AMT=1, ID=2}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=1, ID=3}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=2, ID=3}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=1, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=2, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=3, ID=1}
...

这段代码实现了一个 Flink 作业,生成随机数据并对数据进行状态聚合处理。其中包括数据源生成、按键分区、状态初始化、元素聚合处理和结果输出。可以作为多场景下通用的实时数据处理模型。

相关推荐
Boilermaker19926 小时前
[Java 并发编程] Synchronized 锁升级
java·开发语言
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
alonewolf_997 小时前
JDK17新特性全面解析:从语法革新到模块化革命
java·开发语言·jvm·jdk
一嘴一个橘子7 小时前
spring-aop 的 基础使用(啥是增强类、切点、切面)- 2
java
sheji34167 小时前
【开题答辩全过程】以 中医药文化科普系统为例,包含答辩的问题和答案
java
恋爱绝缘体18 小时前
2020重学C++重构你的C++知识体系
java·开发语言·c++·算法·junit
wszy18098 小时前
新文章标签:让用户一眼发现最新内容
java·python·harmonyos
wszy18099 小时前
顶部标题栏的设计与实现:让用户知道自己在哪
java·python·react native·harmonyos
程序员小假9 小时前
我们来说一下无锁队列 Disruptor 的原理
java·后端
资生算法程序员_畅想家_剑魔9 小时前
Kotlin常见技术分享-02-相对于Java 的核心优势-协程
java·开发语言·kotlin