Flink算子通用状态应用测试样例

Flink算子通用状态应用测试样例

1. 获取Flink执行环境
c 复制代码
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
    

2. 创建数据源,生成随机数据
c 复制代码
        DataStream<Map<String, String>> source = env.addSource(new SourceFunction<Map<String, String>>() {
            @Override
            public void run(SourceContext<Map<String, String>> ctx) throws Exception {
                while (true) {
                    HashMap<String, String> hashMap = new HashMap<>();
                    hashMap.put("ID", new Random().nextInt(3) + 1 + "");
                    hashMap.put("AMT", "1");
                    System.out.println("------");
                    System.out.println("生产数据:" + hashMap);
                    ctx.collect(hashMap);
                    Thread.sleep(1000);
                }
            }
            @Override
            public void cancel() {}
        });

3. 按照ID和星期几进行分组
c 复制代码
        KeyedStream<Map<String, String>, String> keyedStream = source.keyBy(new KeySelector<Map<String, String>, String>() {
            @Override
            public String getKey(Map<String, String> value) throws Exception {
                return value.get("ID") + LocalDate.now().getDayOfWeek();
            }
        });

4. 处理函数,实现状态初始化和元素处理逻辑
c 复制代码
        SingleOutputStreamOperator<Map<String, String>> process = keyedStream.process(new KeyedProcessFunction<String, Map<String, String>, Map<String, String>>() {
            private AggregatingState<Map<String, String>, Map<String, String>> aggState;

            @Override
            public void open(Configuration parameters) throws Exception {
                // 配置状态的TTL
                StateTtlConfig ttlConfig = StateTtlConfig
                        .newBuilder(Time.days(1))
                        .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) // 仅在创建和写入时清除,另一个读和写时清除
                        .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired) // 不退回过期值
                        .build();
                // 初始化状态
                AggregatingStateDescriptor<Map<String, String>, Map<String, String>, Map<String, String>> aggRes = new AggregatingStateDescriptor<>("aggRes", new AggregateFunction<Map<String, String>, Map<String, String>, Map<String, String>>() {
                    @Override
                    public Map<String, String> createAccumulator() {
                        return new HashMap<>();
                    }

                    @Override
                    public Map<String, String> add(Map<String, String> in, Map<String, String> acc) {
                        String amt = acc.get("AMT");
                        if (amt == null) {
                            acc.put("ID", in.get("ID"));
                            acc.put("AMT", in.get("AMT"));
                        } else {
                            acc.put("AMT", Integer.valueOf(in.get("AMT")) + Integer.valueOf(amt) + "");
                        }
                        return acc;
                    }

                    @Override
                    public Map<String, String> getResult(Map<String, String> acc) {
                        return acc;
                    }

                    @Override
                    public Map<String, String> merge(Map<String, String> a, Map<String, String> b) {
                        return null;
                    }
                }, TypeInformation.of(new TypeHint<Map<String, String>>() {
                }));
                aggRes.enableTimeToLive(ttlConfig);
                aggState = getRuntimeContext().getAggregatingState(aggRes);
            }

            @Override
            public void processElement(Map<String, String> value, KeyedProcessFunction<String, Map<String, String>, Map<String, String>>.Context ctx, Collector<Map<String, String>> out) throws Exception {
                aggState.add(value);
                out.collect(aggState.get());
            }
        });

5. 打印聚合结果
c 复制代码
        process.map((MapFunction<Map<String, String>, Object>) value -> {
            System.out.println("聚合结果:" + value);
            return null;
        });

6. 执行作业
c 复制代码
        env.execute("Flink Common State Test");

7. 执行结果
c 复制代码
------
生产数据:{AMT=1, ID=2}
聚合结果:{AMT=1, ID=2}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=1, ID=3}
------
生产数据:{AMT=1, ID=3}
聚合结果:{AMT=2, ID=3}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=1, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=2, ID=1}
------
生产数据:{AMT=1, ID=1}
聚合结果:{AMT=3, ID=1}
...

这段代码实现了一个 Flink 作业,生成随机数据并对数据进行状态聚合处理。其中包括数据源生成、按键分区、状态初始化、元素聚合处理和结果输出。可以作为多场景下通用的实时数据处理模型。

相关推荐
北执南念6 分钟前
基于 Spring 的策略模式框架,用于根据不同的类的标识获取对应的处理器实例
java·spring·策略模式
王道长服务器 | 亚马逊云10 分钟前
一个迁移案例:从传统 IDC 到 AWS 的真实对比
java·spring boot·git·云计算·github·dubbo·aws
华仔啊15 分钟前
为什么 keySet() 是 HashMap 遍历的雷区?90% 的人踩过
java·后端
9号达人27 分钟前
Java 13 新特性详解与实践
java·后端·面试
橙序员小站33 分钟前
搞定系统设计题:如何设计一个支付系统?
java·后端·面试
嘟嘟可在哪里。1 小时前
IntelliJ IDEA git凭据帮助程序
java·git·intellij-idea
岁忧1 小时前
(LeetCode 每日一题) 3541. 找到频率最高的元音和辅音 (哈希表)
java·c++·算法·leetcode·go·散列表
_extraordinary_1 小时前
Java 多线程进阶(四)-- 锁策略,CAS,synchronized的原理,JUC当中常见的类
java·开发语言
纪元A梦2 小时前
贪心算法应用:信用评分分箱问题详解
java·算法·贪心算法
007php0072 小时前
Redis高级面试题解析:深入理解Redis的工作原理与优化策略
java·开发语言·redis·nginx·缓存·面试·职场和发展