Ubuntu 18.04(x86_64)安装配置 CUDA 11.6 + cuDNN v8.9.7 + TensorRT8.4.1.5(亲测可用)

1. 检查是否安装显卡驱动

复制代码
lspci | grep -i nvidia

nvidia-smi

如果显示特定的界面,这表明显卡驱动已经被安装。若未安装驱动,则需通过手动方式进行安装。

首先,需要添加软件源:

执行以下命令以添加PPA源:

复制代码
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update

接下来,查询可用的驱动程序:

通过运行以下命令来查看可安装的驱动选项:

复制代码
ubuntu-drivers devices

选择并安装最合适的驱动,通常推荐安装带有"recommended"标记的驱动,这个驱动版本号往往是最高的。

通常,建议直接安装带有"recommended"标记的驱动。但是 ,对于CUDA 11.6,至少需要安装版本为510的驱动程序。

复制代码
sudo apt update
sudo apt install nvidia-driver-510

然后重启计算机!!!!!

2. CUDA 11.6

CUDA Toolkit Archive | NVIDIA Developer

复制代码
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
sudo sh cuda_11.6.0_510.39.01_linux.run

配置环境

复制代码
sudo gedit ~/.bashrc

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.6/lib64
export PATH=$PATH:/usr/local/cuda-11.6/bin
export CUDA_HOME=/usr/local/cuda-11.6

请特别留意文件夹路径的正确性。有时路径可能直接是 `/usr/local/cuda`,而其他时候可能包含具体的版本号。务必确认所引用的文件夹确实存在。

复制代码
source ~/.bashrc

为确保CUDA正确安装,需要更新环境变量后进行验证。请确保检查的CUDA文件夹路径与之前设置的环境变量路径相匹配。

复制代码
cat /usr/local/cuda/version.json

尽管通过使用 `nvidia-smi` 或 `nvcc --version` 命令可以查看CUDA的版本号,但这并不足以准确判断CUDA环境是否配置正确,因为即使CUDA环境未正确配置,这两个命令也能显示版本号。因此,依照前述方法检查CUDA版本和环境配置的正确性更为可靠。

2. cuDNN v8.9.7

安装cuDNN的步骤相对于CUDA来说更为简单,主要涉及下载相应版本的压缩包,然后将文件复制到特定目录并设置适当的权限。

访问NVIDIA官方网站下载cuDNN:

需要将这个文件(以及可能的其他相关文件)复制到CUDA的安装目录中。基于CUDA安装路径(/usr/local/cuda-11.6),以下是复制这些文件的命令:

复制代码
sudo cp /home/fairlee/Downloads/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/include/cudnn_version.h /usr/local/cuda-11.6/include/
sudo cp /home/fairlee/Downloads/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.6/include/
sudo cp /home/fairlee/Downloads/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/lib64/libcudnn* /usr/local/cuda-11.6/lib64/

查看是否正确安装

复制代码
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

3. TensorRT8.4.1.5

https://developer.nvidia.com/nvidia-tensorrt-8x-download

复制代码
sudo gedit ~/.bashrc

注意放的目录

复制代码
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/fairlee/Programs/TensorRT-8.4.1.5/lib
export LIBRARY_PATH=$LIBRARY_PATH:/home/fairlee/Programs/TensorRT-8.4.1.5/lib

sudo cp -rP ~/Programs/TensorRT-8.4.1.5/lib/* /usr/lib/
sudo cp -rP ~/Programs/TensorRT-8.4.1.5/include/* /usr/include/

测试 #在TensorRt目录文件夹下,cd到sample文件夹下

复制代码
#在TensorRt目录文件夹下,cd到sample文件夹下
sudo make
cd ../bin
./sample_mnist

有两个Python版本安装在系统中:Python 2.7.17 和 Python 3.6.9。TensorRT的.whl文件是针对特定版本的Python编译的,所以需要选择与打算使用的Python版本对应的TensorRT wheel文件。

由于Python 2已经过时且不再推荐使用,应该使用Python 3的版本。系统中安装的是Python 3.6.9,因此应该安装与之兼容的TensorRT wheel文件:

复制代码
tensorrt-8.4.1.5-cp36-none-linux_x86_64.whl
相关推荐
钮钴禄·爱因斯晨18 分钟前
Linux(一) | 初识Linux与目录管理基础命令掌握
linux·运维·服务器
AllyLi022422 分钟前
CondaError: Run ‘conda init‘ before ‘conda activate‘
linux·开发语言·笔记·python
Coision.42 分钟前
linux 网络:并发服务器及IO多路复用
linux·服务器·网络
jingfeng5141 小时前
线程池及线程池单例模式
linux·开发语言·单例模式
Lethehong2 小时前
保姆级教程 | 在Ubuntu上部署Claude Code Plan Mode全过程
linux·命令行
Eloudy2 小时前
AlmaLinux 上 Python 3.6 切换到 Python 3.11
linux·almalinux8
我智商开挂3 小时前
嵌入式Linux(Exynos 4412)笔记
linux·运维·arm开发
shylyly_3 小时前
Linux->多线程4
java·linux·开发语言·信号量·环形队列
sunny052963 小时前
Linux shell getopts 解析命令行参数
linux·运维·bash·shell