AGI旅程 之 环境搭建

你什么也没有得到,空船而去,空船而归,但心是欢喜的。 -- 骆玉明 《诗里特别有禅》

阅读完本文你可以:完成python开发环境搭建。

本机系统环境:macOS 12.6.2

安装项:

  • Python 3.11.8
  • Anaconda 2.5.0
  • Visual Studio Code 1.86.0

Python

目前调用大模型的API并不限制特定编程语言,但是Python因其丰富的数据科学和机器学习库而广受欢迎,在自然语言处理(NLP)和AI开发领域尤为普遍,比如通过Hugging Face Transformers库可以轻松调用各种预训练大模型API。对于初学者或快速原型开发,Python通常更为便捷。

python下载地址:www.python.org/downloads/

根据自己的环境选择对应的安装包,我的环境是mac使用的是 3.11.8,安装使用默认配置,直接一路"继续"就好。

安装完成后,执行命令查看是否安装成功。

python -V

如果输出"Python 3.11.8"则表示安装成功。

Anaconda

Anaconda 是一个流行的开源数据科学平台,它提供了便于安装、管理和使用 Python 和 R 等语言的数据科学软件包的环境。Anaconda已经自带了很多版本的python环境,也可以只安装Anaconda然后选择其自带的python环境。

Anaconda 主要包含以下组件:

  1. Conda:一个开源的包管理系统和环境管理器,用来创建、管理和切换不同的Python环境,我们常用的组件

  2. Anaconda Navigator:一个图形用户界面,可以直观地管理环境、安装包、启动Jupyter Notebook、Spyder等开发工具,我们常用的组件

  3. Anaconda Distribution:预装了许多常用的数据科学和机器学习库,如NumPy、Pandas、Scikit-Learn、Matplotlib等,同时也支持R语言的统计和图形化工具。

  4. Jupyter Notebook(或JupyterLab):一个基于Web的交互式计算环境,支持混合代码、文本、数学表达式、富媒体输出等形式,极大地方便了数据清理、探索性分析和结果展示等工作。

Anaconda下载地址:www.anaconda.com/download

配置

安装成功后就可以创建运行环境了,点击桌面上的Anaconda Navigator图标,打开Anaconda Navigator界面

Anaconda Navigator内,点击左下的"Create"按钮,输入自定义的环境名称,勾选Python环境,并选择对应的python版本,我这里选择的是3.11.8,点击弹窗内"Create"后会开始创建环境,这需要一段时间。环境创建好后,会在右侧看到当前环境的所有已安装的依赖包。

Conda常用命令

  • 创建同时指定Python版本的新环境 conda create --name myenv python=3.9
  • 激活名为myenv的环境 conda activate myenv
  • 列出所有已创建的环境 conda env list
  • 退出当前激活的Conda环境 conda deactivate
  • 删除名为myenv的环境 conda remove --name myenv --all
  • 在当前环境安装包 conda install package_name
  • 在激活的conda环境中使用pip安装包 conda activate myenv && pip install package_name
  • 更新当前环境中的所有包 conda update --all
  • 更新指定包至最新版本 conda update package_name
  • 从当前环境卸载包 conda remove package_name
  • 导出当前环境配置到environment.yml文件 conda env export > environment.yml
  • 根据environment.yml文件创建新环境 conda env create -f environment.yml
  • 查看当前Conda环境的详细信息 conda info
  • 列出当前环境中已安装的所有包 conda list
  • 添加新的conda频道 conda config --add channels channel_name
  • 查看当前conda版本号 conda --version

这些命令工具在Anaconda Navigator内大部分都可以界面化操作。

Visual Studio Code

Visual Studio Code (简称VSCode) 是一款由微软开发的开源、跨平台的源代码编辑器,适用于Windows、Linux和macOS操作系统。VSCode以其轻量级、高度可定制性和丰富的扩展生态系统而广受欢迎,尤其适合Python及其他多种编程语言的开发。

下载地址:code.visualstudio.com/Download

配置

安装python扩展

点击"Install"(安装)按钮开始安装扩展。

激活并选择conda环境

  • 方式一:点击右下角的解释器,选择conda环境
  • 方式二:过按 Cmd+Shift+P(Mac)或 Ctrl+Shift+P(Windows/Linux)可以打开命令面板,输入 "Python: Select Interpreter"后回车,选择conda环境

安装"通义灵码"扩展

通义灵码,是阿里云出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。

可用于日常辅助开发,但是有些公司基于安全性考虑禁止在公司内部使用。

安装方式与其它扩展方式相同。

安装Jupyter扩展

Jupyter 是一个开源的交互式计算环境,最初称为 IPython notebook,用于数据清理、转换、可视化、数值模拟、统计建模、机器学习等多个领域。它提供了一个基于Web的笔记本界面,用户可以在其中编写和运行代码、查看实时结果、制作图表、撰写叙述性的文本等。

如果习惯使用Jupyter编辑器,可以安装该扩展

如果使用Jupyter编辑器需要注册conda的环境切换按钮在编辑器的右上角

结束语

本系列博客主要作为个人学习AGI过程的知识记录,可能会存在错误,如有误,望指正。

相关推荐
池央26 分钟前
GPUGeek携手ComfyUI :低成本文生图的高效解决方案
人工智能
Mr.Winter`1 小时前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
强盛小灵通专卖员2 小时前
分类分割详细指标说明
人工智能·深度学习·算法·机器学习
特立独行的猫a3 小时前
HarmonyOS 【诗韵悠然】AI古诗词赏析APP开发实战从零到一系列(一、开篇,项目介绍)
人工智能·华为·harmonyos·古诗词
yu4106214 小时前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995207 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681657 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..7 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能8 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航8 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能