神经网络|(十二)概率论基础知识-先验/后验/似然概率基本概念

【1】引言

前序学习进程中,对贝叶斯公式曾经有相当粗糙的回归,实际上如果我们看教科书或者网页,在讲贝叶斯公式的时候,会有几个名词反复轰炸:先验概率、后验概率、似然概率。

今天就来把它们解读一下,为以后的学习铺平道路。

【2】概念解释

【2.1】先验概率

先验概率,在获取任何新数据或者新信息之前,对某个事件发生概率的出事判断,就是基于历史经验、常识或主观做出的判断。

比如,抛一枚硬币,向上或者向下的概率都是0.5,这是基于常识做出的判断,属于先验概率。

先验概率会在获取任何新数据或者新信息之后被不断刷新,可以记录为 P ( A ) P(A) P(A)。

【2.2】似然概率

似然概率,在已知某个事件或某个参数的前提下,观测到某一结果概率,描述了因,预测果出现的可能性。

比如,抛一枚硬币,第一次正面朝上,问再抛两次,三次中至少有一次反面朝上的概率。这个时候可以预测,剩余两次的结果组合为[正正]、[正反],[反正],[反反],三次中至少有一次反面朝上的概率实际上只需要判断后两次即可,概率是四分之三,这个概率是似然概率。

似然概率可以记录为 P ( B ∣ A ) P(B|A) P(B∣A),也就是事件A发生后,事件B发生的概率。

【2.3】后验概率

后验概率,在获取观测数据或者信息之后,对原事件发生概率的更新判断,是对先验概率基于似然概率的校正。

比如抛一枚硬币,第一次正面朝上,三次中有至少一次反面朝上的概率是四分之三,则第二次和第三次抛硬币出现反面朝上的概率就是后验概率,这个概率也等于四分之三。

后验概率可以记录为 P ( A ∣ B ) P(A|B) P(A∣B),也就是观测到事件B发生后,事件A发生的概率。

【3】总结

学习了先验概率、后验概率和似然概率的基本概念。

相关推荐
救救孩子把几秒前
3-机器学习与大模型开发数学教程-第0章 预备知识-0-3 函数初步(多项式、指数、对数、三角函数、反函数)
人工智能·数学·机器学习
CareyWYR几秒前
每周AI论文速递(250908-250912)
人工智能
张晓~183399481212 分钟前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
deephub30 分钟前
量子机器学习入门:三种数据编码方法对比与应用
人工智能·机器学习·量子计算·数据编码·量子机器学习
AI 嗯啦33 分钟前
计算机视觉----opencv实战----指纹识别的案例
人工智能·opencv·计算机视觉
max50060037 分钟前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
trsoliu38 分钟前
前端基于 TypeScript 使用 Mastra 来开发一个 AI 应用 / AI 代理(Agent)
前端·人工智能
白掰虾1 小时前
STM32N6&AI资料汇总
人工智能·stm32·嵌入式硬件·stm32n6·stm32ai
爱思德学术2 小时前
中国计算机学会(CCF)推荐学术会议-C(软件工程/系统软件/程序设计语言):MSR 2026
人工智能·机器学习·软件工程·数据科学
小李独爱秋2 小时前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模