神经网络|(十二)概率论基础知识-先验/后验/似然概率基本概念

【1】引言

前序学习进程中,对贝叶斯公式曾经有相当粗糙的回归,实际上如果我们看教科书或者网页,在讲贝叶斯公式的时候,会有几个名词反复轰炸:先验概率、后验概率、似然概率。

今天就来把它们解读一下,为以后的学习铺平道路。

【2】概念解释

【2.1】先验概率

先验概率,在获取任何新数据或者新信息之前,对某个事件发生概率的出事判断,就是基于历史经验、常识或主观做出的判断。

比如,抛一枚硬币,向上或者向下的概率都是0.5,这是基于常识做出的判断,属于先验概率。

先验概率会在获取任何新数据或者新信息之后被不断刷新,可以记录为 P ( A ) P(A) P(A)。

【2.2】似然概率

似然概率,在已知某个事件或某个参数的前提下,观测到某一结果概率,描述了因,预测果出现的可能性。

比如,抛一枚硬币,第一次正面朝上,问再抛两次,三次中至少有一次反面朝上的概率。这个时候可以预测,剩余两次的结果组合为[正正]、[正反],[反正],[反反],三次中至少有一次反面朝上的概率实际上只需要判断后两次即可,概率是四分之三,这个概率是似然概率。

似然概率可以记录为 P ( B ∣ A ) P(B|A) P(B∣A),也就是事件A发生后,事件B发生的概率。

【2.3】后验概率

后验概率,在获取观测数据或者信息之后,对原事件发生概率的更新判断,是对先验概率基于似然概率的校正。

比如抛一枚硬币,第一次正面朝上,三次中有至少一次反面朝上的概率是四分之三,则第二次和第三次抛硬币出现反面朝上的概率就是后验概率,这个概率也等于四分之三。

后验概率可以记录为 P ( A ∣ B ) P(A|B) P(A∣B),也就是观测到事件B发生后,事件A发生的概率。

【3】总结

学习了先验概率、后验概率和似然概率的基本概念。

相关推荐
johnny2332 分钟前
OCR、文档解析工具合集(下)
人工智能
西西弗Sisyphus1 小时前
知识蒸馏 Knowledge Distillation 概率链式法则(Probability Chain Rule)
概率论·概率链式法则
Uzuki1 小时前
LLM 指标 | PPL vs. BLEU vs. ROUGE-L vs. METEOR vs. CIDEr
深度学习·机器学习·llm·vlm
Moshow郑锴2 小时前
实践题:智能客服机器人设计
人工智能·机器人·智能客服
2501_924889552 小时前
商超高峰客流统计误差↓75%!陌讯多模态融合算法在智慧零售的实战解析
大数据·人工智能·算法·计算机视觉·零售
维基框架3 小时前
维基框架 (Wiki Framework) 1.1.0 版本发布 提供多模型AI辅助开发
人工智能
居7然4 小时前
大模型微调面试题全解析:从概念到实战
人工智能·微调
haidizym5 小时前
质谱数据分析环节体系整理
大数据·人工智能·数据分析·ai4s
Godspeed Zhao5 小时前
Tesla自动驾驶域控制器产品(AutoPilot HW)的系统化梳理
人工智能·机器学习·自动驾驶