初识Pandas和Series

Pandas概述

Pandas是数据分析的三大剑客之一,是Python的核心数据分析师,它提供了快速、灵活、明确的数据结构,能够简单,直观,快速地处理各种类型的数据,具体介绍如下:

Pandas能够处理的数据:

1、与SQL或Excel表类似的数据

2、有序和无序(非固定频率)的时间序列数据

3、带行、列标签的矩阵数据

4、任意其他形式的观测、统计数据集 Pandas提供的两个主要数据结构Series(一维数组结构)和DataFrame(二维数组结构),可以处理金融,统计,社会科学,工程等领域里的大多数典型案例,并且Pandas是基于Numpy进行开发的,可以与其他第三方科学计算库完美集成。

pandas的功能很多,具体优势如下:

1.处理浮点与非浮点数据里的缺失数据,表示为NaN

2.大小可变,例如插入或删除DataFrame等多维对象的列

3.自动、显式数据对齐,显式地将对象与一组标签对齐,也可以忽略标签,在Series、DataFrame计算时自动与数据对齐

4.强大、灵活的分组统计(groupby)功能,即数据聚合、数据转换

5.把Python和NumPy数据结构里不规则、不同索引的数据轻松地转换为DataFrame对象

6.智能标签,对大型数据集进行切片、花式索引、子集分解等操作

7.直观地合并(merge)、连接(join)数据集

8.灵活地重塑(reshape)、透视(pivot)数据集

9.成熟的导入、导出工具,导入文本文件(CSV等支持分隔符的文件)、Excel文件、数据库等来源的数据,导出Excel文件、文本文件等,利用超快的HDF5格式保存或加载数据

10.时间序列;支持日期范围生成、频率转换、移动窗口统计、移动窗口线性回归、日期位移等时间序列共功能

Series

Pandas是Python数据分析重要的库,而Series和DataFrame是Pandas库中两个重要的对象,也是Pandas中两个重要的数据结构。

图解Series

Series是Python的Pandas库中的一种数据结构,它类似一维数组,由一组数据以及这组数据相关的标签(索引)组成,或者仅有一组数据或者仅有一组数据没有索引也可以创建一个简单的Series对象,Series可以存储整数,浮点数,字符串,Python对象等多种类型的数据。

Series对象的创建

创建Series对象主要使用Pandas中的Series()方法,语法如下:

ini 复制代码
import pandas as pd
s=pd.Series(data,index=index)

s=pd.Series([100,90,80])
print(s,type(s))

输出结果:

参数说明: data:表示数据,支持Python字典、多维数组、标量值(即只有大小,没有方向的量。也就是说,只是一个数值,如s=pd.Series(5))。

index:表示行标签(索引),不写的话默认从0开始。

返回值:Series对象。

Series的索引

Series位置索引

位置索引是从0开始的 [0]是Series的第一个数,[1]是Series的第二个数,以此类推。默认用到的就是位置索引。

注意点: Series对象不能用[-1]定位索引。

ini 复制代码
s1 = pd.Series([100,90,80])
print(s1[2])

Series标签索引

Series标签索引与位置索引方法类似,用[]表示,里面是索引名称,注意index的数据类型是字符串,如果需求获取多个标签索引值,用[[]]表示(相当于[]中包含一个列表)

lua 复制代码
s2 = pd.Series([110,119,120],index=['a','b','c'])
print(s2)
print(s2['a'])
print(s2[['a','c']])

Series切片索引

  • 标签索引做切片,包头包尾(即包含索引开始位置的数据,也包含索引借宿位置的数据)
  • 位置索引做切片,包头不包尾(即包含索引开始位置的数据,不包含索引借宿位置的数据)
python 复制代码
import pandas as pd
s2 = pd.Series([110,119,120],index=['a','b','c'])
print(s2)
# 使用标签索引切片
print(s2['b':'c'])
print('------')
# 使用位置索引切片
s4 = pd.Series([110,119,120])
print(s4[1:2])

获取Series的索引和值

python 复制代码
import pandas as pd
s2 = pd.Series([110,119,120],index=['a','b','c'])
print(s2.index)
print('------')
for i in s2.index:
    print(i)
print('------')
print(s2.values)
print('------')
for i in s2.values:
    print(i)

输出结果:

相关推荐
刘一说几秒前
Java中基于属性的访问控制(ABAC):实现动态、上下文感知的权限管理
java·网络·python
一晌小贪欢1 分钟前
Python 操作 Excel 高阶技巧:用 openpyxl 玩转循环与 Decimal 精度控制
开发语言·python·excel·openpyxl·python办公·python读取excel
铁蛋AI编程实战4 分钟前
Falcon-H1-Tiny 微型 LLM 部署指南:100M 参数也能做复杂推理,树莓派 / 手机都能跑
java·人工智能·python·智能手机
写代码的【黑咖啡】17 分钟前
Python 中的自然语言处理工具:spaCy
开发语言·python·自然语言处理
高洁0118 分钟前
多模态融合驱动下的具身学习机制研究
python·算法·机器学习·数据挖掘·知识图谱
狗都不学爬虫_20 分钟前
JS逆向 -最新版 盼之(decode__1174、ssxmod_itna、ssxmod_itna2)纯算
javascript·爬虫·python·网络爬虫·wasm
七夜zippoe1 小时前
Dask:超越内存限制的并行计算——从任务图到分布式调度的实战指南
python·集群·task·array·dataframe·dask
serve the people1 小时前
python环境搭建 (五) Dockerfile 和 docker-compose.yml 核心作用
java·python·docker
维构lbs智能定位1 小时前
工厂人员定位(一)融合定位技术如何重构安全生产与效率管理?(含系统架构、技术选型对比、实际应用)
python·物联网·智慧工厂·厂区人员定位系统·工厂人员定位·工厂定位系统
yufuu981 小时前
进阶技巧与底层原理
jvm·数据库·python