volatile关键字的作用 以及 单例模式(饿汉模式与懒汉模式的区别及改进)

文章目录

💡volatile保证内存可见性

Volatile 修饰的变量能够保证"内存可见性"以及防止"指令重排序"

什么是可见性:当某个线程修改了某个共享变量,其他的线程是否可以看见修改后的内容;

因为访问一个变量时,CPU就会先把变量从内存中读出来,然后放到CPU寄存器中进行运算;运算完之后,再将新的数据在内存中进行刷新;

对于操作系统来讲,读内存的速度是比较慢的,(注意:这里的慢 是 相对于寄存器而言的,就像,读内存要比读硬盘快上千倍或上万倍,读寄存器比读内存快上千倍上万倍), 这时候就会影响执行的效率。为了提高效率,编译器就会对代码进行一个优化,把读内存的操作优化成读寄存器,从而减少对内存的读取,提高整个效率;

举个例子:

代码目的:创建两个线程,通过线程2修改线程1的循环判断条件来终止线程1的循环执行

java 复制代码
public class Demo1 {
    private static int flag = 0;
    public static void main(String[] args) {

        Thread thread1 = new Thread(() -> {
            while(flag == 0) {
                //当循环不等于0时,一直循环,直到flag被改变
            }
            System.out.println("thread1 执行结束");
        });

        Thread thread2 = new Thread(() -> {
            Scanner in = new Scanner(System.in);
            System.out.println("更改flag:");
            //通过更改flag终止线程1的执行
            flag = in.nextInt();
            System.out.println("输入成功");
        });

        thread1.start();
        thread2.start();
    }
}

根据结果可以看到,线程1并没有终止循环,这就是"内存可见性"所导致的线程不安全👇

在多线程的环境下(在单线程环境下没问题),如果编译器作出优化,可能就会导致bug,虽然提高了效率,但是最后结果却是错误的,

此时就需要程序员使用Volatile关键字告诉编译器,不需要进行代码优化:

直接给flag加上Volatile即可

注意, volatile只能够保证内存可见性问题,不会保证代码的原子性,但是Synchronized既可以保证内存可见性,也能保证原子性;

以上就是volatile能够保证内存可见性的讲解

💡单例模式

单例模式是一种经典的设计模式了,它的作用就是保证在有些场景下,需要一个类只能有一个对象,而不能有多个对象,比如像你以后娶媳妇,你娶媳妇肯定是只能娶一个,而不能娶两个;

但是,问题来了,一个类只需要一个对象,那在new对象的时候只new一次对象不就可以了么,为什么还要弄个这么麻烦的东西呢?

因为啊,只new一次对象确实是只有一个,但是呢,如果你在写代码的过程中忘了呢,然后又new了一次,这种概率是很大的,毕竟,人是最不靠谱的动物😅,就像是有一句话说的好:宁可相信世界上有鬼,也不要相信男人的那张嘴😂,所以的,为了防止这种失误发生,就有了单例模式,在Java中也有许多类似的机制,比如final,就会保证修饰的变量肯定是不能改变的;@override,保证你这方法肯定是一个重写方法;这些都是在语法方面进行了一些限制,但是,在语法方面,对于单例并没有特定的语法,所以,这里就通过编程技巧来达到类似的限制效果;

单例模式的两种实现方式:

💡饿汉模式

1.在类中实例化类的对象,给外界提供一个方法来使用这个对象;

2.将构造方法用private修饰,保证在类外不能再实例化这个类对象

java 复制代码
public class SingleTon {

    //在类的内部实例化对象
    public static SingleTon instance = new SingleTon();
    //定义一个方法,用来获取这个对象
    //后序如果类外的代码想要使用对象时,直接调用这个方法即可
    public static SingleTon getInstance() {
        return instance;
    }
    //设置一个私有的构造方法,保证在这个类外无法实例化这个对象
    private SingleTon(){

    }
}

可以看到,这里的对象被static修饰,所以在类被加载的时候创建,创建的时机就比较早,并且被static修饰的对象只会被创建一次,所以这种在类加载时就创建实例的模式称为饿汉模式

💡懒汉模式

懒汉模式单线程版:

这样的写法与上面的相同点就是:同样在类外不能再第二次实例化对象,不同点是:将创建对象的时机放在getInstance方法中,这样在类加载的时候就不会创造实例,而是当第一次调用这个方法时才会去创建

java 复制代码
public class SingleTon {
    public static SingleTon instance = null;
    //定义一个方法,用来获取这个对象
    //后序如果类外的代码想要使用对象时,直接调用这个方法即可
    public static SingleTon getInstance() {
        //懒汉模式
        if(instance == null) {
            instance = new SingleTon();
        }
        return instance;
    }
    //设置一个私有的构造方法,保证在这个类外无法实例化这个对象
    private SingleTon(){
        
    }
}

💡懒汉模式多线程版

在线程安全方面,上面的饿汉模式是在多线程下是安全的,而懒汉模式在多线程下是不安全的;

因为,如果多个线程同时访问一个变量 ,那么不会出现不安全问题,如果多个线程同时修改一个变量,就有可能出现不安全问题;

饿汉模式下,只进行了访问,没有涉及到修改

懒汉模式下,不仅进行了访问,还涉及了修改,那么下面就讲解以下懒汉模式在多线程下如何会产生不安全

既然出现了不安全问题,那么如何将懒汉模式修改成安全的呢?

💡方法:进行加锁,使线程安全

但是,如果锁加在这个地方,仍然是不安全的,因为,这样还是会进行穿插执行,如果两个并发的进入的 if 语句中,那么,就会进行锁竞争,假设,thread1 获取到了锁,thread2 在阻塞等待,等到 thread1 创建一次对象,释放锁后,thread2 就又会载获取到锁,进行创建对象,所以,这个加锁操作并没有保证它是一个整体(非原子性)

所以说,并不是加了锁就安全,只有锁加对了才会安全,在加锁的时候要保证以下几方面:

  1. 锁的 {} 的范围是合理的,能够把需要作为整体的每个部分都包括进去;

  2. 锁的对象能够起到锁竞争的效果;

懒汉模式多线程版改进👇

将if语句和new都放在锁里面成为一个整体,这样就避免了会穿插执行;

java 复制代码
    public static SingleTon getInstance() {
        synchronized (SingleTon.class) {
            
            if(instance == null) {
                instance = new SingleTon();
            }
            
        }
        return instance;
    }

但是上述代码还有一个问题,每当调用getInstance时,都会尝试去进行加锁,而加锁是一个开销很大的操作,而懒汉模式之所以会出现线程不安全问题,是因为只是在第一次调用getInstance方法new对象时,可能会出现问题,但是,只要new完对象以后,就不用再进行锁竞争了,直接访问就可以了,所以再次进行优化👇:

java 复制代码
    public static SingleTon getInstance() {
        //在最外面在进行一次判断
        if(instance == null) {
            synchronized (SingleTon.class) {

                if(instance == null) {
                    instance = new SingleTon();
                }

            }
        }
        return instance;
    }

在第一次实例化对象后,以后再调用个getInstance方法时,就不会再创建对象,而且也不会再去获取锁,因为,第一个if判断语句都不会进去,所以不会执行到加锁的语句;

上面的单例模式看着好像是完全没问题了,但是,还是有一个问题,就是可能会触发指令重排序问题,所以就需要使用volatile解决指令重排序问题

💡volatile防止指令重排序

指令重排序:编译器会保证在你代码逻辑不变的情况下,对代码进行优化,使代码的性能得到提高,这样的操作称为指令重排序;

举个例子:

在代码中,在实例化对象这一步可能会出现指令重排序问题,下面就来讲解一下为什么👇

对于上述的指令重排序问题,解决方案就是:使用volatile关键字修饰singleTon

**线程安全的单例模式(懒汉模式)**👇

java 复制代码
public class SingleTon {
    //使用volatile关键字修饰,防止指令重排序
    public static volatile SingleTon singleTon = null;
    public static SingleTon getSingleTon() {
        if(singleTon == null) {
            synchronized (SingleTon.class) {
                if(singleTon == null) {
                    singleTon = new SingleTon();
                }
            }
        }
        return singleTon;
    }
    private SingleTon() {

    };

}

💡💡这里再次提醒,使用单例模式要注意三个要点:

  • 加锁
  • 两层if判断
  • 使用volatile修饰引用,防止指令重排序
相关推荐
重生之我在字节当程序员2 天前
如何实现单例模式?
单例模式
夕泠爱吃糖2 天前
如何实现单例模式?
单例模式
m0_607548762 天前
什么是单例模式
开发语言·javascript·单例模式
Am心若依旧4092 天前
[c++进阶(三)]单例模式及特殊类的设计
java·c++·单例模式
因特麦克斯2 天前
如何实现对象的克隆?如何实现单例模式?
c++·单例模式
狐拾叁5 天前
设计模式-创建者模式-单例模式(java版)
java·单例模式·设计模式
benben0445 天前
Unity3D仿星露谷物语开发5之角色单例模式
unity·单例模式·游戏引擎
Mr.136 天前
如何实现对象的克隆?如何实现单例模式?
c++·单例模式
missu2176 天前
C++中如何实现单例模式?
开发语言·c++·单例模式
行走的生活6 天前
为什么要用单例模式?
单例模式