Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习率策略。

模型参数:

  1. Backbone(骨干网络):

    • 类型:AlexNet
    • 输出类别数:4
  2. Neck:

    • 在配置中未指定,为None
  3. Head(头部):

    • 类型:ClsHead
    • 损失函数:
      • 类型:CrossEntropyLoss
      • 损失权重:1.0
  4. 数据处理:

    • 图像归一化参数:
      • 均值:[123.675, 116.28, 103.53]
      • 标准差:[58.395, 57.12, 57.375]
      • 是否转为RGB格式:True
  5. 训练参数:

    • 批量大小:8
    • 训练数据加载器的工作线程数:4
    • 是否使用预训练权重:False
    • 是否冻结特定层:False
    • 要冻结的层:('backbone',)
    • 训练周期数:100
  6. 测试参数:

    • 检查点路径:''
    • 评估指标:准确率、精确率、召回率、F1分数、混淆矩阵
    • 评估指标选项:
      • topk:(1, 2)
      • thrs:None
      • 平均模式:'none'
  7. 优化器参数:

    • 类型:SGD
    • 学习率:0.001
    • 动量:0.9
    • 权重衰减:1e-4
  8. 学习率调整配置:

    • 类型:StepLrUpdater
    • 调整步数:每15个周期调整一次学习率

图1:

让batch-size缩小一倍:

图2:

图二数据损失对比图一更加平滑,且下降梯度更大,速度更快,下降过程中方向调整更为敏感。

但在拟合过程中ACC全局波动更大

相关推荐
思通数据1 小时前
AI全域智能监控系统重构商业清洁管理范式——从被动响应到主动预防的监控效能革命
大数据·人工智能·目标检测·机器学习·计算机视觉·数据挖掘·ocr
flex88881 小时前
FramePack - 开源 AI 视频生成工具
人工智能·开源·音视频
jndingxin1 小时前
OpenCV CUDA模块中矩阵操作------范数(Norm)相关函数
人工智能·opencv
何双新2 小时前
第6讲、全面拆解Encoder、Decoder内部模块
人工智能
jzwei0232 小时前
Transformer Decoder-Only 算力FLOPs估计
人工智能·深度学习·transformer
lilye662 小时前
精益数据分析(55/126):双边市场模式的挑战、策略与创业阶段关联
大数据·人工智能·数据分析
weixin_408266342 小时前
深度学习-分布式训练机制
人工智能·分布式·深度学习
struggle20252 小时前
AgenticSeek开源的完全本地的 Manus AI。无需 API,享受一个自主代理,它可以思考、浏览 Web 和编码,只需支付电费。
人工智能·开源·自动化
Panesle2 小时前
阿里开源通义万相Wan2.1-VACE-14B:用于视频创建和编辑的一体化模型
人工智能·开源·大模型·文生视频·多模态·生成模型
QQ2740287563 小时前
Kite AI 自动机器人部署教程
linux·运维·服务器·人工智能·机器人·web3