Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习率策略。

模型参数:

  1. Backbone(骨干网络):

    • 类型:AlexNet
    • 输出类别数:4
  2. Neck:

    • 在配置中未指定,为None
  3. Head(头部):

    • 类型:ClsHead
    • 损失函数:
      • 类型:CrossEntropyLoss
      • 损失权重:1.0
  4. 数据处理:

    • 图像归一化参数:
      • 均值:[123.675, 116.28, 103.53]
      • 标准差:[58.395, 57.12, 57.375]
      • 是否转为RGB格式:True
  5. 训练参数:

    • 批量大小:8
    • 训练数据加载器的工作线程数:4
    • 是否使用预训练权重:False
    • 是否冻结特定层:False
    • 要冻结的层:('backbone',)
    • 训练周期数:100
  6. 测试参数:

    • 检查点路径:''
    • 评估指标:准确率、精确率、召回率、F1分数、混淆矩阵
    • 评估指标选项:
      • topk:(1, 2)
      • thrs:None
      • 平均模式:'none'
  7. 优化器参数:

    • 类型:SGD
    • 学习率:0.001
    • 动量:0.9
    • 权重衰减:1e-4
  8. 学习率调整配置:

    • 类型:StepLrUpdater
    • 调整步数:每15个周期调整一次学习率

图1:

让batch-size缩小一倍:

图2:

图二数据损失对比图一更加平滑,且下降梯度更大,速度更快,下降过程中方向调整更为敏感。

但在拟合过程中ACC全局波动更大

相关推荐
weixin_437497772 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端2 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat2 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技2 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪2 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子2 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z2 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人3 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风3 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang5203 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能