Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习率策略。

模型参数:

  1. Backbone(骨干网络):

    • 类型:AlexNet
    • 输出类别数:4
  2. Neck:

    • 在配置中未指定,为None
  3. Head(头部):

    • 类型:ClsHead
    • 损失函数:
      • 类型:CrossEntropyLoss
      • 损失权重:1.0
  4. 数据处理:

    • 图像归一化参数:
      • 均值:[123.675, 116.28, 103.53]
      • 标准差:[58.395, 57.12, 57.375]
      • 是否转为RGB格式:True
  5. 训练参数:

    • 批量大小:8
    • 训练数据加载器的工作线程数:4
    • 是否使用预训练权重:False
    • 是否冻结特定层:False
    • 要冻结的层:('backbone',)
    • 训练周期数:100
  6. 测试参数:

    • 检查点路径:''
    • 评估指标:准确率、精确率、召回率、F1分数、混淆矩阵
    • 评估指标选项:
      • topk:(1, 2)
      • thrs:None
      • 平均模式:'none'
  7. 优化器参数:

    • 类型:SGD
    • 学习率:0.001
    • 动量:0.9
    • 权重衰减:1e-4
  8. 学习率调整配置:

    • 类型:StepLrUpdater
    • 调整步数:每15个周期调整一次学习率

图1:

让batch-size缩小一倍:

图2:

图二数据损失对比图一更加平滑,且下降梯度更大,速度更快,下降过程中方向调整更为敏感。

但在拟合过程中ACC全局波动更大

相关推荐
jkyy20142 分钟前
食材图像识别与个性化饮食:智能家电如何重构膳食健康管理?
大数据·人工智能·物联网·健康医疗
kisshuan123967 分钟前
基于Mask-RCNN与Res2Net的排水系统缺陷检测与分类
人工智能·数据挖掘
P.H. Infinity12 分钟前
【QLIB】一、系统架构
人工智能·金融
搬砖的kk15 分钟前
openJiuwen 快速入门:使用华为云大模型搭建 AI 智能体
数据库·人工智能·华为云
Gavin在路上23 分钟前
SpringAIAlibaba之从执行生命周期到实战落地(7)
人工智能
万俟淋曦31 分钟前
【论文速递】2025年第50周(Dec-07-13)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
没有不重的名么39 分钟前
When Hypergraph Meets Heterophily: New Benchmark Datasets and Baseline
人工智能·深度学习·opencv·计算机视觉·超图
zxsz_com_cn1 小时前
设备预测性维护优势全景解读:安全、降本、增效与可量化ROI
人工智能
爬点儿啥1 小时前
[Ai Agent] 13 用 Streamlit 为 Agents SDK 打造可视化“驾驶舱”
人工智能·ai·状态模式·agent·streamlit·智能体
机器学习算法与Python实战1 小时前
腾讯翻译大模型,手机可运行
人工智能