Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习率策略。

模型参数:

  1. Backbone(骨干网络):

    • 类型:AlexNet
    • 输出类别数:4
  2. Neck:

    • 在配置中未指定,为None
  3. Head(头部):

    • 类型:ClsHead
    • 损失函数:
      • 类型:CrossEntropyLoss
      • 损失权重:1.0
  4. 数据处理:

    • 图像归一化参数:
      • 均值:[123.675, 116.28, 103.53]
      • 标准差:[58.395, 57.12, 57.375]
      • 是否转为RGB格式:True
  5. 训练参数:

    • 批量大小:8
    • 训练数据加载器的工作线程数:4
    • 是否使用预训练权重:False
    • 是否冻结特定层:False
    • 要冻结的层:('backbone',)
    • 训练周期数:100
  6. 测试参数:

    • 检查点路径:''
    • 评估指标:准确率、精确率、召回率、F1分数、混淆矩阵
    • 评估指标选项:
      • topk:(1, 2)
      • thrs:None
      • 平均模式:'none'
  7. 优化器参数:

    • 类型:SGD
    • 学习率:0.001
    • 动量:0.9
    • 权重衰减:1e-4
  8. 学习率调整配置:

    • 类型:StepLrUpdater
    • 调整步数:每15个周期调整一次学习率

图1:

让batch-size缩小一倍:

图2:

图二数据损失对比图一更加平滑,且下降梯度更大,速度更快,下降过程中方向调整更为敏感。

但在拟合过程中ACC全局波动更大

相关推荐
城市直通车17 分钟前
聚焦产业落地与生态共建小拼AI携手火山引擎共推AIGC电商智能化升级
人工智能·aigc·火山引擎
傻啦嘿哟23 分钟前
深度学习破解复杂验证码:CNN实战指南
人工智能·深度学习·cnn
人工智能培训38 分钟前
深度学习—卷积神经网络(4)
人工智能·深度学习·神经网络·机器学习·cnn·dnn
小糖豆巴拉巴拉1 小时前
AI应用(1)-基础概念的理解
人工智能
CES_Asia1 小时前
亚洲科技话语权之争:CES Asia 2026核心展区席位进入收官阶段
大数据·人工智能·科技·物联网·机器人
一个会的不多的人1 小时前
人工智能基础篇:概念性名词浅谈(第十四讲)
人工智能·制造·数字化转型
Brduino脑机接口技术答疑1 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg
玄同7651 小时前
Python 装饰器:LLM API 的安全与可观测性增强
开发语言·人工智能·python·安全·自然语言处理·numpy·装饰器
房产中介行业研习社1 小时前
市面上比较主流的房产中介管理系统有哪些推荐?
大数据·人工智能·房产直播技巧·房产直播培训
学习3人组1 小时前
目标检测模型选型+训练调参极简步骤清单
人工智能·目标检测·决策树