# Go高性能编程-不要使用Map缓存大量数据

Go高性能编程-不要使用Map缓存大量数据

1、起因

阿森在写代码的时候,有一个通知某个服务器上的所有在线用户的需求,这些用户的信息我是缓存在了Mmap中,大概的代码如下,我在遍历的时候,先是获取读锁,然后for range 遍历。但是这个时候这个节点的用户的上下线还是比较频繁的,大概有几百的qps,这些请求都会获取写锁。这个时候问题就来了。 遍历30w的map居然花了大概10ms,导致后续的写请求都被阻塞。

go 复制代码
//简单缓存
type User struct {
	ID int64 
	xxxx
}

type Cache Struct{
	map[int64]*User
	mutex 
}

所以我看了下go的map的源码

go/src/runtime/map.go at master · golang/go (github.com)

发现go map的遍历效率相比数组来说是比较差的

  1. 遍历新 buckets

    1. 确认新buckets对应的旧buckets是否还有数据。
    2. 如果有,则遍历旧buckets中将分配到该新buckets中的数据;
    3. 如果没有,则遍历该新buckets
    4. 遍历bucket 中的所有 cell。每个 bucket 中包含 8 个 cell,从有 key 的 cell 中取出 key 和 value
  2. 遍历新 buckets 中的下一个 bucket,继续以上操作

go 复制代码
type hmap struct {
	// Note: the format of the hmap is also encoded in cmd/compile/internal/reflectdata/reflect.go.
	// Make sure this stays in sync with the compiler's definition.
	count     int // # live cells == size of map.  Must be first (used by len() builtin)
	flags     uint8
	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
	hash0     uint32 // hash seed

	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

	extra *mapextra // optional fields
}

type bmap struct {
	tophash [bucketCnt]uint8
}

func mapiterinit(t *maptype, h *hmap, it *hiter) {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(mapiterinit))
	}

	it.t = t
	if h == nil || h.count == 0 {
		return
	}

	if unsafe.Sizeof(hiter{})/goarch.PtrSize != 12 {
		throw("hash_iter size incorrect") // see cmd/compile/internal/reflectdata/reflect.go
	}
	it.h = h

	// grab snapshot of bucket state
	it.B = h.B
	it.buckets = h.buckets
	if !t.Bucket.Pointers() {
		// Allocate the current slice and remember pointers to both current and old.
		// This preserves all relevant overflow buckets alive even if
		// the table grows and/or overflow buckets are added to the table
		// while we are iterating.
		h.createOverflow()
		it.overflow = h.extra.overflow
		it.oldoverflow = h.extra.oldoverflow
	}

	// decide where to start
	r := uintptr(rand())
	it.startBucket = r & bucketMask(h.B)
	it.offset = uint8(r >> h.B & (abi.MapBucketCount - 1))

	// iterator state
	it.bucket = it.startBucket

	// Remember we have an iterator.
	// Can run concurrently with another mapiterinit().
	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
		atomic.Or8(&h.flags, iterator|oldIterator)
	}

	mapiternext(it)
}

func mapiternext(it *hiter) {
	h := it.h
	if raceenabled {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(mapiternext))
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map iteration and map write")
	}
	t := it.t
	bucket := it.bucket
	b := it.bptr
	i := it.i
	checkBucket := it.checkBucket

next:
	if b == nil {
		if bucket == it.startBucket && it.wrapped {
			// end of iteration
			it.key = nil
			it.elem = nil
			return
		}
		if h.growing() && it.B == h.B {
			// Iterator was started in the middle of a grow, and the grow isn't done yet.
			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
			// bucket hasn't been evacuated) then we need to iterate through the old
			// bucket and only return the ones that will be migrated to this bucket.
			oldbucket := bucket & it.h.oldbucketmask()
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.BucketSize)))
			if !evacuated(b) {
				checkBucket = bucket
			} else {
				b = (*bmap)(add(it.buckets, bucket*uintptr(t.BucketSize)))
				checkBucket = noCheck
			}
		} else {
			b = (*bmap)(add(it.buckets, bucket*uintptr(t.BucketSize)))
			checkBucket = noCheck
		}
		bucket++
		if bucket == bucketShift(it.B) {
			bucket = 0
			it.wrapped = true
		}
		i = 0
	}
	for ; i < abi.MapBucketCount; i++ {
		offi := (i + it.offset) & (abi.MapBucketCount - 1)
		if isEmpty(b.tophash[offi]) || b.tophash[offi] == evacuatedEmpty {
			// TODO: emptyRest is hard to use here, as we start iterating
			// in the middle of a bucket. It's feasible, just tricky.
			continue
		}
		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.KeySize))
		if t.IndirectKey() {
			k = *((*unsafe.Pointer)(k))
		}
		e := add(unsafe.Pointer(b), dataOffset+abi.MapBucketCount*uintptr(t.KeySize)+uintptr(offi)*uintptr(t.ValueSize))
		if checkBucket != noCheck && !h.sameSizeGrow() {
			// Special case: iterator was started during a grow to a larger size
			// and the grow is not done yet. We're working on a bucket whose
			// oldbucket has not been evacuated yet. Or at least, it wasn't
			// evacuated when we started the bucket. So we're iterating
			// through the oldbucket, skipping any keys that will go
			// to the other new bucket (each oldbucket expands to two
			// buckets during a grow).
			if t.ReflexiveKey() || t.Key.Equal(k, k) {
				// If the item in the oldbucket is not destined for
				// the current new bucket in the iteration, skip it.
				hash := t.Hasher(k, uintptr(h.hash0))
				if hash&bucketMask(it.B) != checkBucket {
					continue
				}
			} else {
				// Hash isn't repeatable if k != k (NaNs).  We need a
				// repeatable and randomish choice of which direction
				// to send NaNs during evacuation. We'll use the low
				// bit of tophash to decide which way NaNs go.
				// NOTE: this case is why we need two evacuate tophash
				// values, evacuatedX and evacuatedY, that differ in
				// their low bit.
				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
					continue
				}
			}
		}
		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
			!(t.ReflexiveKey() || t.Key.Equal(k, k)) {
			// This is the golden data, we can return it.
			// OR
			// key!=key, so the entry can't be deleted or updated, so we can just return it.
			// That's lucky for us because when key!=key we can't look it up successfully.
			it.key = k
			if t.IndirectElem() {
				e = *((*unsafe.Pointer)(e))
			}
			it.elem = e
		} else {
			// The hash table has grown since the iterator was started.
			// The golden data for this key is now somewhere else.
			// Check the current hash table for the data.
			// This code handles the case where the key
			// has been deleted, updated, or deleted and reinserted.
			// NOTE: we need to regrab the key as it has potentially been
			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
			rk, re := mapaccessK(t, h, k)
			if rk == nil {
				continue // key has been deleted
			}
			it.key = rk
			it.elem = re
		}
		it.bucket = bucket
		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
			it.bptr = b
		}
		it.i = i + 1
		it.checkBucket = checkBucket
		return
	}
	b = b.overflow(t)
	i = 0
	goto next
}

数组的遍历就很好理解了,这里就不上源码了,大概就是找到数组的开始位置直接在连续内存块上扫描

在存储50w数据的时候,数组的遍历效率大概是map的10倍,数量越大效率越高

2、延展

既然数组的遍历效率比map高这么多,那么是否还有其他的性能影响呢?

这个时候我比较了下同样的数量的[]User 和map[int64] User的gc耗时

发现在储存500000​数据量的场景下 数组的gc的耗时居然也比Map快上了5倍

​*cpu: m1 pro

​*memory: 32G

​*Go map gc x 10 cost: 235.258125ms.

​*Slice map gc x 10 cost: 43.631375ms.

3、改造

很明显,我们直接用map缓存大量数据的时候,无论是gc还是遍历效率,都是非常低的。

所以我计划用数组和map结合实现一个遍历效率和数组一样,而且插入更新操作和Map一样

go 复制代码
type KV[K comparable] struct {
	Key   K
	Value any
}

func (kv *KV[K]) GetKey() K {
	return kv.Key
}

type SliceMap[K comparable] struct {
	DataSlice        []*KV[K]
	IndexMap         map[K]int
	maxIndex         int
	maxMaxNoUseCount int
	maxNoUsePercent  float64
}

数组里面储存实际的指针,map里面存储key对应的数组的index这样既能获得数组的高效便利和更快GC,还能获得map的快速插入删除更新。代价也很明显内存cost变多了。

你可以在此查看代码和文档:hswell/slicemap (github.com)

能点个赞就最好了

相关推荐
不爱说话郭德纲15 小时前
聚焦 Go 语言框架,探索创新实践过程
go·编程语言
0x派大星2 天前
【Golang】——Gin 框架中的 API 请求处理与 JSON 数据绑定
开发语言·后端·golang·go·json·gin
IT书架2 天前
golang高频面试真题
面试·go
郝同学的测开笔记2 天前
云原生探索系列(十四):Go 语言panic、defer以及recover函数
后端·云原生·go
秋落风声3 天前
【滑动窗口入门篇】
java·算法·leetcode·go·哈希表
0x派大星4 天前
【Golang】——Gin 框架中的模板渲染详解
开发语言·后端·golang·go·gin
0x派大星5 天前
【Golang】——Gin 框架中的表单处理与数据绑定
开发语言·后端·golang·go·gin
三里清风_6 天前
如何使用Casbin设计后台权限管理系统
golang·go·casbin
0x派大星6 天前
【Goland】——Gin 框架中间件详解:从基础到实战
开发语言·后端·中间件·golang·go·gin
0x派大星6 天前
【Goland】——Gin 框架简介与安装
后端·golang·go·gin