Python最常用的库

本文章主要为大家总结,9个Python最常用的包及使用案例

1 NumPy

描述: NumPy 是 Python 的一个扩展库,支持高维数组与矩阵运算,并为数组运算提供了大量的数学函数库。它是科学计算中的基础包之一,用于处理大型多维数组和矩阵的运算与基础统计分析。

示例: 创建一个 2x2 的 NumPy 数组,并计算其行列式。

python 复制代码
import numpy as np

a = np.array([[1, 2], [3, 4]])
det_a = np.linalg.det(a)
print(det_a)

2 Pandas

描述: Pandas 是基于 NumPy 的一个数据分析库,提供了高效的 DataFrame 数据结构,以及大量便捷的数据操作工具,非常适合于数据清洗、分析与展示。

示例: 创建一个简单的 DataFrame 并输出。

python 复制代码
import pandas as pd

data = {'Name': ['Tom', 'Jerry'], 'Age': [20, 18]}
df = pd.DataFrame(data)
print(df)

3 Matplotlib

描述: Matplotlib 是 Python 的一个绘图库,它支持多种输出格式,并能够生成多种硬拷贝格式和交互式环境下的图表。使用 Matplotlib 可以生成条形图、直方图、散点图等多种图表。

示例: 绘制一个简单的线图。

python 复制代码
import matplotlib.pyplot as plt

x = [1, 2, 3, 4]
y = [10, 20, 25, 30]
plt.plot(x, y)
plt.show()

4 SciPy

描述: SciPy 是建立在 NumPy 基础之上的一款方便、易于使用、专为科学和工程设计的 Python 工具包。它用于解决线性代数、积分、插值、特殊函数、快速傅立叶变换、信号处理和图像处理等问题。

示例: 使用 SciPy 进行数组的最小二乘拟合。

python 复制代码
from scipy.optimize import leastsq

def model(p, x):
    return p[0] * x + p[1]

def residuals(p, x, y):
    return y - model(p, x)

x = np.array([0, 1, 2, 3])
y = np.array([-1, 0.2, 0.9, 2.1])
p0 = [1, 0]  # 初始参数猜测

plsq = leastsq(residuals, p0, args=(x, y))
print(plsq[0])

5 Scikit-learn

描述: Scikit-learn 是基于 NumPy, SciPy 和 Matplotlib 的 Python 机器学习库。它包含了许多用于数据挖掘和数据分析的工具,包括回归、分类、聚类、降维等。

示例: 使用 scikit-learn 训练一个简单的线性回归模型。

python 复制代码
from sklearn.linear_model import LinearRegression
import numpy as np

x = np.array([[1], [2], [3]])
y = np.array([1, 2, 3])
model = LinearRegression()
model.fit(x, y)
print(model.coef_)

6 TensorFlow

描述: TensorFlow 是一个由 Google 开发的开源机器学习库,用于研究和生产中的数值计算。它的灵活架构允许用户以单个 API 在多种平台上部署计算,包括桌面、服务器和移动设备。

示例: 创建一个简单的 TensorFlow 常量并进行加法运算。

python 复制代码
import tensorflow as tf

a = tf.constant(1)
b = tf.constant(2)
c = tf.add(a, b)
print(c.numpy())

7 PyTorch

描述: PyTorch 是一个开源机器学习库,广泛应用于计算机视觉和自然语言处理等领域。它是基于 Torch 库,提供了大量的工具和库支持深度学习的研究和开发。

示例: 创建一个简单的张量并进行加法运算。

python 复制代码
import torch

a = torch.tensor(1)
b = torch.tensor(2)
c = torch.add(a, b)
print(c.item())

8 Flask

描述: Flask 是一个使用 Python 编写的轻量级 Web 应用框架。它被设计为快速和简单,易于学习,使得它成为构建 Web 应用的一个不错的选择。

示例: 一个简单的 Flask 应用,返回 "Hello, World!"。

python 复制代码
from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, World!'

if __name__ == '__main__':
    app.run()

9 Django

描述: Django 提供了更多的内置功能,适合开发大型网站和应用。

示例: 创建一个 Django 视图,返回 "Hello, World!"(注意,Django 需要更复杂的设置)。

python 复制代码
# views.py
from django.http import HttpResponse

def hello_world(request):
    return HttpResponse("Hello, World!")

这些示例旨在提供每个工具的基础使用方法,并非完整的应用示例。每个示例都需要适当的环境和依赖库。

相关推荐
长安牧笛6 小时前
反传统学习APP,摒弃固定课程顺序,根据用户做题正确性,学习速度,动态调整课程难度,比如某知识点学不会,自动推荐基础讲解和练习题,学习后再进阶,不搞一刀切。
python·编程语言
2501_916008896 小时前
深入解析iOS机审4.3原理与混淆实战方法
android·java·开发语言·ios·小程序·uni-app·iphone
码界筑梦坊6 小时前
330-基于Python的社交媒体舆情监控系统
python·mysql·信息可视化·数据分析·django·毕业设计·echarts
森焱森6 小时前
详解 Spring Boot、Flask、Nginx、Redis、MySQL 的关系与协作
spring boot·redis·python·nginx·flask
he___H6 小时前
双色球红球
python
deephub6 小时前
机器学习特征工程:分类变量的数值化处理方法
python·机器学习·特征工程·分类变量
Dimpels6 小时前
CANN ops-nn 算子解读:AIGC 批量生成中的 Batch 处理与并行算子
开发语言·aigc·batch
blueSatchel6 小时前
U-Boot载入到DDR过程的代码分析
linux·开发语言·u-boot
Pyeako6 小时前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset