R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第三,trans_venn class和trans_alpha class

这次我们分享,trans_venn类用于venn分析。trans_alpha class,Alpha多样性可以使用trans_alpha类进行转换和绘制。

为了分析组的唯一otu和共享otu,我们首先根据sample_table中的"Group"列合并样本。

dataset1 <- dataset$merge_samples(use_group = "Group")

t1 <- trans_venn$new(dataset1, ratio = "seqratio")

t1$plot_venn()

#当组数过多,无法用维恩图表示时,可以用花瓣图表示。

dataset1 <- dataset$merge_samples(use_group = "Type")

t1 <- trans_venn$new(dataset1)

t1$plot_venn(petal_plot = TRUE)

Alpha多样性可以使用trans_alpha类进行转换和绘制

复制代码
> t1 <- trans_alpha$new(dataset = dataset, group = "Group")
The transformed diversity data is stored in object$data_alpha ...
The group statistics are stored in object$data_stat ...
> t1
trans_alpha object:
data_alpha have 7 columns:  Sample, Measure, Value, SampleID, Group, Type, Saline 
data_alpha$Measure:  Observed, Chao1, ACE, Shannon, Simpson, InvSimpson, Fisher, Pielou, Coverage 
data_stat have 6 columns:  Group, Measure, N, Mean, SD, SE 
> # return t1$alpha_stat
> t1$data_stat[1:5, ]
  Group  Measure  N        Mean           SD           SE
1    CW Observed 30 1843.166667 220.57918796 40.272065654
2    CW    Chao1 30 2552.635929 338.11686659 61.731411634
3    CW      ACE 30 2715.680687 367.02577198 67.009431500
4    CW  Shannon 30    6.307972   0.53551395  0.097771024
5    CW  Simpson 30    0.989680   0.01304767  0.002382167

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > t1$cal_diff(method = "KW") The result is stored in object$res_diff ... > # return t1$res_alpha_diff > t1$res_diff[1:5, ] Comparison Measure Test_method Group P.unadj P.adj Significance 1 IW - CW - TW Observed Kruskal-Wallis Rank Sum Test IW 0.15504659 0.27908386 ns 2 IW - CW - TW Chao1 Kruskal-Wallis Rank Sum Test IW 0.01696123 0.05088368 ns 3 IW - CW - TW ACE Kruskal-Wallis Rank Sum Test IW 0.01333436 0.05088368 ns 4 IW - CW - TW Shannon Kruskal-Wallis Rank Sum Test IW 0.53187046 0.79780569 ns 5 IW - CW - TW Simpson Kruskal-Wallis Rank Sum Test CW 0.80832094 0.90936106 ns |

复制代码
> t1$cal_diff(method = "anova")
Perform post hoc test with the method: duncan.test ...
The result is stored in object$res_diff ...
> t1$res_diff
      Measure Test_method Group Letter
1    Observed       anova    IW      a
2    Observed       anova    TW      a
3    Observed       anova    CW      a
4       Chao1       anova    IW      a
5       Chao1       anova    TW     ab
6       Chao1       anova    CW      b
7         ACE       anova    IW      a
8         ACE       anova    TW      b
9         ACE       anova    CW      b
10    Shannon       anova    IW      a
11    Shannon       anova    TW      a
12    Shannon       anova    CW      a
13    Simpson       anova    IW      a
14    Simpson       anova    TW      a
15    Simpson       anova    CW      a
16 InvSimpson       anova    IW      a
17 InvSimpson       anova    TW      a
18 InvSimpson       anova    CW      a
19     Fisher       anova    IW      a
20     Fisher       anova    TW      a
21     Fisher       anova    CW      a
22     Pielou       anova    IW      a
23     Pielou       anova    TW      a
24     Pielou       anova    CW      a
25   Coverage       anova    CW      a
26   Coverage       anova    TW      a
27   Coverage       anova    IW      b

#现在,让我们绘制每个组的alpha多样性的平均值和se,并添加duncan。

> t1$plot_alpha(add_letter = T, measure = "Chao1", use_boxplot = FALSE)

> t1$plot_alpha(pair_compare = F, measure = "Chao1", shape = "Group")

今天,我发现一个很尴尬的问题,就是这个包更新了,兄弟以前的代码不能直接跑了。我尽量把它跑完。这些都是我跑完之后分享的,大家可以先跑。

相关推荐
龙腾AI白云7 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
Aloudata10 小时前
告别 90% 误报率:基于算子级血缘实现精准数据治理与变更影响分析
数据挖掘·数据治理·元数据·数据血缘
AC赳赳老秦12 小时前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek
Faker66363aaa16 小时前
基于YOLO11-Seg-EfficientViT的书籍缺陷检测与分类系统详解
人工智能·分类·数据挖掘
蚁巡信息巡查系统16 小时前
网站信息发布再巡查机制怎么建立?
大数据·人工智能·数据挖掘·内容运营
2501_9413370618 小时前
蓝莓成熟度自动检测与分类_基于YOLO11-C3k2-AdditiveBlock-CGLU的深度学习实现
深度学习·分类·数据挖掘
Lun3866buzha19 小时前
涡轮叶片表面缺陷识别与分类使用YOLOv8与特征金字塔共享卷积详解及代码实现
yolo·分类·数据挖掘
OLOLOadsd12319 小时前
改进YOLO11-EMBSFPN-SC用于矿石矿物识别分类原创
人工智能·分类·数据挖掘
高洁0119 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·算法·机器学习·数据挖掘·知识图谱
应用市场19 小时前
基于稠密对应关系的3D人体网格回归技术详解
3d·数据挖掘·回归