【文献分享】LyMOI一种结合深度学习和大规模语言模型的用于解读组学数据的工作流程通过对海量组学数据进行分子全景分析,可以识别细胞中的调控网络,但还需要进行机制解读和实验验证。在此,我们结合深度学习和大型语言模型推理,开发了一种用于组学解读的混合工作流程,称为 LyMOI。LyMOI 采用了 GPT-3.5 来进行生物学知识推理,并使用了一个包含图卷积网络(GCN)的大型图模型。该大型图模型整合了进化上保守的蛋白质相互作用,并通过分层微调从多组学数据中预测特定环境下的分子调节因子。然后,GPT-3.5 生成机器的推理链(CoT),以机制上解读其在生物系统中的作用。以自噬为例,LyMOI