目录
迪杰斯特拉模板(用来求一个点出发到其它点的最短距离):
cpp
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const ll N = 3e5 + 10, M = 1e6 + 10, inf = 1e14;
struct node
{
ll v, w;
bool operator <(const node& y) const//重载一个<,用于优先队列排序
{
return w > y.w;//小到大
}
};
int n, m;
priority_queue<node>q;
vector<node> e[N];
ll dis[N], vis[N];
void Dij()
{
dis[1] = 0;//从1号点出发,表示从1到1距离为0
q.push({ 1,dis[1] });//1号点以及到1的距离入队
while (q.size())
{
int u = q.top().v;//取最小边相连的点出队
q.pop();
if (vis[u])//访问过则跳过
continue;
vis[u] = 1;//没访问赋为访问
for (auto i : e[u])//遍历以u为出发点的边
{
int v = i.v, w = i.w;//取其相连的点及权值
if (dis[v] > dis[u] + w)//经过u点到v点的权值小于之前的权值则更新
{
dis[v] = dis[u] + w;
q.push({ v,dis[v] });//v点以及到v的距离
}
}
}
}
int main()
{
cin >> n >> m;
fill(dis+1, dis+1+n, inf);//赋值一个无穷大,表示没有连接
for (int i = 1; i <= m; i++)
{
int x, y, w;
cin >> x >> y >> w;
e[x].push_back({ y,w });//存入以x出发到y,权值为w
}
Dij();
}
克鲁斯卡尔模板(用来求最小生成树):
cpp
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e3+20;
int m, n;
int h[N],f[N],x[N],y[N];
struct edge
{
int v1, v2;
double w;
};
vector<edge> e;
int find(int k)//查找
{
if (f[k] == k)
return k;
return f[k] = find(f[k]);
}
void merge(int x, int y)//合并
{
x=find(x),y=find(y);
if (x!= y)
f[x] = f[y];
}
bool cmp(edge a, edge b)
{
return a.w < b.w;
}
int main()
{
cin >> n;
for (int j = 1; j <= n; j++)
{
cin >> x[j] >> y[j]>> h[j];
f[j] = j;//初始化并查集根
}
cin>>m;
for (int j = 1; j <= m; j++)//添加边
{
int v1,v2,w;
cin>>v1>>v2>>w;
e.push_back({ v1, v2, w });
}
sort(e.begin(), e.end(), cmp);//边从小到大排序
int cnt=0;
for (int i = 0; i < e.size(); i++)
{
if (find(e[i].v1) != find(e[i].v2))//不属于一个集合
{
merge(e[i].v1, e[i].v2);//合并
}
if (cnt == n-1)//n个点只需要n-1条边,选取n-1条边后,跳出循环
break;
}
}
题目一(蓝桥王国):
cpp
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const ll N = 3e5 + 10, M = 1e6 + 10, inf = 1e14;
struct node
{
ll v, w;
bool operator <(const node& y) const//重载一个<,用于优先队列排序
{
return w > y.w;//小到大
}
};
int n, m;
priority_queue<node>q;
vector<node> e[N];
ll dis[N], vis[N];
void Dij()
{
dis[1] = 0;//从1号点出发,表示从1到1距离为0
q.push({ 1,dis[1] });//1号点以及到1的距离入队
while (q.size())
{
int u = q.top().v;//取最小边相连的点出队
q.pop();
if (vis[u])//访问过则跳过
continue;
vis[u] = 1;//没访问赋为访问
for (auto i : e[u])//遍历以u为出发点的边
{
int v = i.v, w = i.w;//取其相连的点及权值
if (dis[v] > dis[u] + w)//经过u点到v点的权值小于之前的权值则更新
{
dis[v] = dis[u] + w;
q.push({ v,dis[v] });//v点以及到v的距离
}
}
}
}
int main()
{
cin >> n >> m;
fill(dis+1, dis+1+n, inf);//赋值一个无穷大,表示没有连接
for (int i = 1; i <= m; i++)
{
int x, y, w;
cin >> x >> y >> w;
e[x].push_back({ y,w });//存入以x出发到y,权值为w
}
Dij();
for (int i = 1; i <= n; i++)
{
if (dis[i] >= inf)//无法到达
cout << -1 << " ";
else
cout << dis[i] << " ";
}
}
题目二(随机数据下的最短路径):
cpp
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const ll N = 3e5 + 10, M = 1e6 + 10, inf = 1e14;
struct node
{
ll v, w;
bool operator <(const node& y) const//重载一个<,用于优先队列排序
{
return w > y.w;//小到大
}
};
int n, m, t;
priority_queue<node>q;
vector<node> e[N];
ll dis[N], vis[N];
void Dij(int t)
{
dis[t] = 0;//从t号点出发,表示从t到t距离为0
q.push({ t,dis[t] });//t号点以及到t的距离入队
while (q.size())
{
int u = q.top().v;//取最小边相连的点出队
q.pop();
if (vis[u])//访问过则跳过
continue;
vis[u] = 1;//没访问赋为访问
for (auto i : e[u])//遍历以u为出发点的边
{
int v = i.v, w = i.w;//取其相连的点及权值
if (dis[v] > dis[u] + w)//经过u点到v点的权值小于之前的权值则更新
{
dis[v] = dis[u] + w;
q.push({ v,dis[v] });//v点以及到v的距离
}
}
}
}
int main()
{
cin >> n >> m>> t;
fill(dis+1, dis+1+n, inf);//赋值一个无穷大,表示没有连接
for (int i = 1; i <= m; i++)
{
int x, y, w;
cin >> x >> y >> w;
e[x].push_back({ y,w });//存入以x出发到y,权值为w
}
Dij(t);//从t点出发
for (int i = 1; i <= n; i++)
{
if (dis[i] == inf)//无法到达
cout << -1 << " ";
else
cout << dis[i] << " ";
}
}
题目三(出差):
cpp
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const ll N = 3e5 + 10, M = 1e6 + 10, inf = 1e14;
struct node
{
int v, w;
bool operator <(const node& y) const//重载一个<,用于优先队列排序
{
return w > y.w;//小到大
}
};
int n, m;
priority_queue<node>q;
vector<node> e[N];
int dis[N], vis[N], time0[N];
void Dij()
{
dis[1] = 0;//从1号点出发,表示从1到1距离为0
q.push({ 1,dis[1] });//1号点以及到1的距离入队
while (q.size())
{
int u = q.top().v;//取最小边相连的点出队
q.pop();
if (vis[u])//访问过则跳过
continue;
vis[u] = 1;//没访问赋为访问
for (auto i : e[u])//遍历以u为出发点的边
{
int v = i.v, w = i.w;//取其相连的点及权值
if (dis[v] > dis[u] + w)//经过u点到v点的权值小于之前的权值则更新
{
dis[v] = dis[u] + w;
q.push({ v,dis[v] });//v点以及到v的距离
}
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> time0[i];
fill(dis + 1, dis + 1 + n, inf);//赋值一个无穷大,表示没有连接
for (int i = 1; i <= m; i++)
{
int x, y, w;
cin >> x >> y >> w;
e[x].push_back({ y,w + time0[y]});//存入以x出发到y,权值为w+隔离时间
e[y].push_back({ x,w + time0[x] });//存入以y出发到y,权值为w+隔离时间
}
Dij();
cout << dis[n] - time0[n];//要减掉最后终点的隔离时间
}
题目四(聪明的猴子):
cpp
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e3+20;
int m, n;
int a[N],f[N],x[N],y[N];
struct edge
{
int v1, v2;
double w;
};
vector<edge> e;
int find(int k)//查找
{
if (f[k] == k)
return k;
return f[k] = find(f[k]);
}
void merge(int x, int y)//合并
{
x=find(x),y=find(y);
if (x!= y)
f[x] = f[y];
}
bool cmp(edge a, edge b)
{
return a.w < b.w;
}
int main()
{
cin >> m;
for (int i = 1; i <= m; i++)
cin >> a[i];
cin >> n;
for (int j = 1; j <= n; j++)
{
cin >> x[j] >> y[j];
f[j] = j;//初始化并查集根
}
for(int i=1;i<=n;i++)
for (int j = i + 1; j <= n; j++)//添加边
{
double w = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
e.push_back({ i, j, w });
}
sort(e.begin(), e.end(), cmp);//边从小到大排序
double maxw = 0.0;//记录最小生成树中最大边
int cnt = 0;
for (int i = 0; i < e.size(); i++)
{
if (find(e[i].v1) != find(e[i].v2))//不属于一个集合
{
merge(e[i].v1, e[i].v2);//合并
cnt++;
maxw = max(maxw, e[i].w);//更新最小生成树中最大边
}
if (cnt == n-1)//n个点只需要n-1条边,选取n-1条边后,跳出循环
break;
}
int ans = 0;
for (int i = 1; i <= m; i++)
{
if (a[i] >= maxw)//有几只猴子大于最小生成树中最大边
ans++;
}
cout << ans;
}
题目五(通电):
cpp
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e3+20;
int m, n;
int h[N],f[N],x[N],y[N];
struct edge
{
int v1, v2;
double w;
};
vector<edge> e;
int find(int k)//查找
{
if (f[k] == k)
return k;
return f[k] = find(f[k]);
}
void merge(int x, int y)//合并
{
x=find(x),y=find(y);
if (x!= y)
f[x] = f[y];
}
bool cmp(edge a, edge b)
{
return a.w < b.w;
}
int main()
{
cin >> n;
for (int j = 1; j <= n; j++)
{
cin >> x[j] >> y[j]>> h[j];
f[j] = j;//初始化并查集根
}
for(int i=1;i<=n;i++)
for (int j = i + 1; j <= n; j++)//添加边
{
double w = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]))+(h[i]-h[j])*(h[i]-h[j]);
e.push_back({ i, j, w });
}
sort(e.begin(), e.end(), cmp);//边从小到大排序
double maxw = 0.0;//记录最小生成树中最大边
double ans=0;
int cnt=0;
for (int i = 0; i < e.size(); i++)
{
if (find(e[i].v1) != find(e[i].v2))//不属于一个集合
{
merge(e[i].v1, e[i].v2);//合并
ans+=e[i].w;//求和
maxw = max(maxw, e[i].w);//更新最小生成树中最大边
}
if (cnt == n-1)//n个点只需要n-1条边,选取n-1条边后,跳出循环
break;
}
printf("%.2lf",ans);
}
题目六(机房):
cpp
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const ll N = 3e5 + 10, M = 1e6 + 10;
struct node
{
ll v, w;
bool operator <(const node& y) const//重载一个<,用于优先队列排序
{
return w > y.w;//小到大
}
};
int n, m;
priority_queue<node>q;
vector<node> e[N];
vector<node> temp;
ll dis[N], vis[N], cnt[N];
ll Dij(int u, int end)
{
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f3f, sizeof(dis));
dis[u] = 0;//从u号点出发,表示从u到u距离为0
q.push({ u,dis[u] });//u号点以及到u的距离入队
while (q.size())
{
int u = q.top().v;//取最小边相连的点出队
q.pop();
if (vis[u])//访问过则跳过
continue;
vis[u] = 1;//没访问赋为访问
for (auto i : e[u])//遍历以u为出发点的边
{
int v = i.v, w = i.w;//取其相连的点及权值
if (dis[v] > dis[u] + w)//经过u点到v点的权值小于之前的权值则更新
{
dis[v] = dis[u] + w;
q.push({ v,dis[v] });//v点以及到v的距离
}
}
}
return dis[end]+cnt[end];//还需要加上自身延迟
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n - 1; i++)
{
int x, y;
cin >> x >> y;
cnt[x]++, cnt[y]++;
temp.push_back({ x,y });//临时存两个顶点
}
for (int i = 0; i < n - 1; i++)//根据度构造边
{
int u = temp[i].v, v = temp[i].w;
e[u].push_back({ v,cnt[u] });//u->v的边,权值为u的度
e[v].push_back({ u,cnt[v] });
}
while (m--)//m次查询
{
int u, v;
cin >> u >> v;
if (u == v)
cout << cnt[u] << endl;
else
{
ll ans = Dij(u, v);
cout << ans << endl;
}
}
}