理论学习:outputs_cls.detach()的什么意思

在PyTorch中,.detach()方法的作用是将一个变量从当前计算图中分离出来,返回一个新的变量,这个新变量不会要求梯度(requires_grad=False)。这意味着使用.detach()方法得到的变量不会在反向传播中被计算梯度,也就是说,对这个变量的任何操作都不会影响到梯度的计算和模型的参数更新。

在上下文outputs_cls.detach()中的具体意义是:

  • outputs_cls是模型对输入数据的一部分(例如,批次数据的后一半)的输出。默认情况下,这些输出会与模型参数通过计算图连接起来,使得对输出的操作(比如计算损失)能够影响到模型参数的梯度。

  • 通过调用outputs_cls.detach(),我们得到了一个与原始outputs_cls内容相同但已从计算图中分离的版本。这样做的目的是在计算知识蒸馏损失时使用这些输出作为"静态"的目标值(或教师信号),而不是让这些输出参与梯度的计算。换句话说,我们希望这些输出作为固定的目标来指导另一部分数据(例如,批次数据的前一半)的训练,但不希望在反向传播时调整生成这些输出的模型参数。

使用.detach()的场景通常包括:

  • 当需要停止某些变量的梯度计算时,比如在知识蒸馏或使用生成的样本进行训练时,需要将生成的数据看作是固定的输入而不是要优化的参数。

  • 在实施某些特定的正则化策略或自定义损失函数时,需要对部分数据或中间结果进行操作,而这些操作不应影响到模型参数的优化过程。

总之,outputs_cls.detach()用于确保outputs_cls中的数据在后续的操作中不会影响到梯度计算和模型参数的更新,从而可以安全地用作损失计算中的固定目标值。

相关推荐
Web阿成1 小时前
3.学习webpack配置 尝试打包ts文件
前端·学习·webpack·typescript
雷神乐乐1 小时前
Spring学习(一)——Sping-XML
java·学习·spring
李雨非-19期-河北工职大2 小时前
思考: 与人交际
学习
哦哦~9212 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
小木_.2 小时前
【python 逆向分析某有道翻译】分析有道翻译公开的密文内容,webpack类型,全程扣代码,最后实现接口调用翻译,仅供学习参考
javascript·python·学习·webpack·分享·逆向分析
Web阿成3 小时前
5.学习webpack配置 babel基本配置
前端·学习·webpack
LeonNo114 小时前
golang , chan学习
开发语言·学习·golang
南宫生5 小时前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode
索然无味io5 小时前
跨站请求伪造之基本介绍
前端·笔记·学习·web安全·网络安全·php