理论学习:outputs_cls.detach()的什么意思

在PyTorch中,.detach()方法的作用是将一个变量从当前计算图中分离出来,返回一个新的变量,这个新变量不会要求梯度(requires_grad=False)。这意味着使用.detach()方法得到的变量不会在反向传播中被计算梯度,也就是说,对这个变量的任何操作都不会影响到梯度的计算和模型的参数更新。

在上下文outputs_cls.detach()中的具体意义是:

  • outputs_cls是模型对输入数据的一部分(例如,批次数据的后一半)的输出。默认情况下,这些输出会与模型参数通过计算图连接起来,使得对输出的操作(比如计算损失)能够影响到模型参数的梯度。

  • 通过调用outputs_cls.detach(),我们得到了一个与原始outputs_cls内容相同但已从计算图中分离的版本。这样做的目的是在计算知识蒸馏损失时使用这些输出作为"静态"的目标值(或教师信号),而不是让这些输出参与梯度的计算。换句话说,我们希望这些输出作为固定的目标来指导另一部分数据(例如,批次数据的前一半)的训练,但不希望在反向传播时调整生成这些输出的模型参数。

使用.detach()的场景通常包括:

  • 当需要停止某些变量的梯度计算时,比如在知识蒸馏或使用生成的样本进行训练时,需要将生成的数据看作是固定的输入而不是要优化的参数。

  • 在实施某些特定的正则化策略或自定义损失函数时,需要对部分数据或中间结果进行操作,而这些操作不应影响到模型参数的优化过程。

总之,outputs_cls.detach()用于确保outputs_cls中的数据在后续的操作中不会影响到梯度计算和模型参数的更新,从而可以安全地用作损失计算中的固定目标值。

相关推荐
大龄门外汉2 分钟前
CPP学习之list使用及模拟实现
windows·学习·list
超浪的晨10 分钟前
Java List 集合详解:从基础到实战,掌握 Java 列表操作全貌
java·开发语言·后端·学习·个人开发
超浪的晨15 分钟前
Java Set 集合详解:从基础语法到实战应用,彻底掌握去重与唯一性集合
java·开发语言·后端·学习·个人开发
香蕉可乐荷包蛋36 分钟前
Python学习之路(十三)-常用函数的使用,及优化
开发语言·python·学习
许白掰1 小时前
Linux入门篇学习——借助 U 盘或 TF 卡拷贝程序到开发板上
linux·学习·借助 u 盘拷贝程序到开发板上·借助 tf卡拷贝程序到开发板上
iFulling12 小时前
【计算机网络】第四章:网络层(上)
学习·计算机网络
香蕉可乐荷包蛋13 小时前
AI算法之图像识别与分类
人工智能·学习·算法
xiaoli232713 小时前
课题学习笔记1——文本问答与信息抽取关键技术研究论文阅读(用于无结构化文本问答的文本生成技术)
笔记·学习
人生游戏牛马NPC1号13 小时前
学习 Flutter (四):玩安卓项目实战 - 中
android·学习·flutter
LGGGGGQ14 小时前
嵌入式学习-PyTorch(7)-day23
人工智能·pytorch·学习