理论学习:outputs_cls.detach()的什么意思

在PyTorch中,.detach()方法的作用是将一个变量从当前计算图中分离出来,返回一个新的变量,这个新变量不会要求梯度(requires_grad=False)。这意味着使用.detach()方法得到的变量不会在反向传播中被计算梯度,也就是说,对这个变量的任何操作都不会影响到梯度的计算和模型的参数更新。

在上下文outputs_cls.detach()中的具体意义是:

  • outputs_cls是模型对输入数据的一部分(例如,批次数据的后一半)的输出。默认情况下,这些输出会与模型参数通过计算图连接起来,使得对输出的操作(比如计算损失)能够影响到模型参数的梯度。

  • 通过调用outputs_cls.detach(),我们得到了一个与原始outputs_cls内容相同但已从计算图中分离的版本。这样做的目的是在计算知识蒸馏损失时使用这些输出作为"静态"的目标值(或教师信号),而不是让这些输出参与梯度的计算。换句话说,我们希望这些输出作为固定的目标来指导另一部分数据(例如,批次数据的前一半)的训练,但不希望在反向传播时调整生成这些输出的模型参数。

使用.detach()的场景通常包括:

  • 当需要停止某些变量的梯度计算时,比如在知识蒸馏或使用生成的样本进行训练时,需要将生成的数据看作是固定的输入而不是要优化的参数。

  • 在实施某些特定的正则化策略或自定义损失函数时,需要对部分数据或中间结果进行操作,而这些操作不应影响到模型参数的优化过程。

总之,outputs_cls.detach()用于确保outputs_cls中的数据在后续的操作中不会影响到梯度计算和模型参数的更新,从而可以安全地用作损失计算中的固定目标值。

相关推荐
医工交叉实验工坊几秒前
2026国自然改版后,该如何写
学习
●VON2 分钟前
DeepSeek-V3.2 模型在 OpenJiuWen 中的部署实践
学习·华为·von·openjiuwen
咚咚王者3 分钟前
人工智能之核心基础 机器学习 第七章 监督学习总结
人工智能·学习·机器学习
grd419 分钟前
Electron for OpenHarmony 实战:Pagination 分页组件实现
python·学习
W|J21 分钟前
ES 学习笔记
笔记·学习·elasticsearch
山土成旧客27 分钟前
【Python学习打卡-Day35】从黑盒到“玻璃盒”:掌握PyTorch模型可视化、进度条与推理
pytorch·python·学习
@zulnger28 分钟前
python 学习笔记(循环)
笔记·python·学习
Shannon Law32 分钟前
【免费下载】关于机器学习和深度学习的书籍
学习
Master_oid32 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习
我命由我1234539 分钟前
开发中的英语积累 P25:Axis、Stroke、Corner、Interceptor、Declared、Internal
经验分享·笔记·学习·职场和发展·求职招聘·职场发展·学习方法