理论学习:outputs_cls.detach()的什么意思

在PyTorch中,.detach()方法的作用是将一个变量从当前计算图中分离出来,返回一个新的变量,这个新变量不会要求梯度(requires_grad=False)。这意味着使用.detach()方法得到的变量不会在反向传播中被计算梯度,也就是说,对这个变量的任何操作都不会影响到梯度的计算和模型的参数更新。

在上下文outputs_cls.detach()中的具体意义是:

  • outputs_cls是模型对输入数据的一部分(例如,批次数据的后一半)的输出。默认情况下,这些输出会与模型参数通过计算图连接起来,使得对输出的操作(比如计算损失)能够影响到模型参数的梯度。

  • 通过调用outputs_cls.detach(),我们得到了一个与原始outputs_cls内容相同但已从计算图中分离的版本。这样做的目的是在计算知识蒸馏损失时使用这些输出作为"静态"的目标值(或教师信号),而不是让这些输出参与梯度的计算。换句话说,我们希望这些输出作为固定的目标来指导另一部分数据(例如,批次数据的前一半)的训练,但不希望在反向传播时调整生成这些输出的模型参数。

使用.detach()的场景通常包括:

  • 当需要停止某些变量的梯度计算时,比如在知识蒸馏或使用生成的样本进行训练时,需要将生成的数据看作是固定的输入而不是要优化的参数。

  • 在实施某些特定的正则化策略或自定义损失函数时,需要对部分数据或中间结果进行操作,而这些操作不应影响到模型参数的优化过程。

总之,outputs_cls.detach()用于确保outputs_cls中的数据在后续的操作中不会影响到梯度计算和模型参数的更新,从而可以安全地用作损失计算中的固定目标值。

相关推荐
心平愈三千疾7 小时前
学习秒杀系统-实现秒杀功能(商品列表,商品详情,基本秒杀功能实现,订单详情)
java·分布式·学习
艾莉丝努力练剑8 小时前
【数据结构与算法】数据结构初阶:详解顺序表和链表(四)——单链表(下)
c语言·开发语言·数据结构·学习·算法·链表
心疼你的一切11 小时前
Unity 多人游戏框架学习系列一
学习·游戏·unity·c#·游戏引擎
Chef_Chen13 小时前
从0开始学习R语言--Day47--Nomogram
学习
毕设源码柳学姐14 小时前
计算机毕业设计Java医学生在线学习平台系统 基于 Java 的医学生在线学习平台设计与开发 Java 医学在线教育学习系统的设计与实现
java·学习·课程设计
永日4567015 小时前
学习日记-spring-day46-7.11
java·学习·spring
Yhame.15 小时前
【 Cache 写策略学习笔记】
笔记·学习
Blossom.11816 小时前
从“炼丹”到“流水线”——如何用Prompt Engineering把LLM微调成本打下来?
人工智能·python·深度学习·神经网络·学习·机器学习·prompt
86Eric16 小时前
C# 入门教程(三):详解字段、属性、索引器及各类参数与扩展方法
学习·c#·传参·扩展方法·属性,字段·输出参数
Xudde.16 小时前
解决了困扰我的upload靶场无法解析phtml等后缀的问题
学习·安全·php