torch环境:
pip install torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0 --index-url https://download.pytorch.org/whl/cu126
运行需要先申请API秘钥,通过load_dotenv来获取api秘钥。在系统环境变量中的创建DEEPSEEK_API_KEY.再将它的秘钥复制过去。

python
import os
from dotenv import load_dotenv
load_dotenv()
# 从环境变量中获取API_KEY
API_KEY = os.getenv("DEEPSEEK_API_KEY")
# print("API_KEY:", API_KEY)
# 调用Deepseek API
# 方法一、使用Python的requests库
def requests_connect_deepseek(api_key):
import requests
# 定义API endpoint
url = "https://api.deepseek.com/v1/chat/completions"
# 定义请求头
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat", # 模型名称
"messages": [
{"role": "user", "content": "你好"} # 消息内容
],
"max_tokens": 10 # 回答内容最大token数
}
# 发送POST请求
response = requests.post(url, headers=headers, json=data)
# 打印响应
print("requests_connect_deepseek回复:", response.json()["choices"][0]["message"]["content"])
# 方法二、使用OpenAI Python库
def openai_connect_deepseek(api_key):
from openai import OpenAI
client = OpenAI(
api_key=api_key, # API密钥
base_url="https://api.deepseek.com/v1", # API基础URL
)
response = client.chat.completions.create(
model="deepseek-chat",
# 模型名称
messages=[ # 系统消息
{"role": "user", "content": "你好"} # 消息内容
],
max_tokens=10 # 回答内容最大token数
)
print("openai_connect_deepseek回复:", response.choices[0].message.content)
if __name__ == "__main__":
# requests_connect_deepseek(API_KEY)
openai_connect_deepseek(API_KEY)