隐私计算实训营学习二:隐私计算开源如何助力数据要素流通

文章目录

一、数据要素流转与数据内外循环

数据要素流转过程(从数据采集加工->到数据价值释放): 链路主要包括采集、存储、加工、使用、提供、传输。
内循环: 数据持有方在自己的运维管控域内对自己的数据使用和安全拥有全责。
外循环: 数据要素离开了持有方管控域,在使用方运维域,持有方依然拥有管控需求和责任,数据外循环是构建数据要素市场的核心,通过外循环数据提供方与使用方都可以获得收益。

  1. 数据提供方收益:新增长点、资产入表、数据资本化。
  2. 数据使用方收益:业务提效、运营降本、扩大营收。

二、数据外循环中的信任焦虑

构建数据要素市场关键:需要有足够的数据提供方加入->才会有足够多数据->数据才会呈现多样性->吸引更多数据使用方加入->数据价值变现。 这是一个理想的良性循环。

信任焦虑: 不可信内部人员、不按约定使用、用户隐私泄露。

信任焦虑的解决方案:从主体信任到技术信任: 信任本质上是对不确定性和复杂性的依赖,从主体信任到技术信任,基于安全可信的技术信任体系,是支撑全行业数据要素安全可控流转的基础。

数据要素流通的技术信任体系: 控制面以区块链/可信计算为核心支撑技术构建数据使用权跨域管控层;数据面以隐私计算为核心支撑技术构建密态数联网,包括密态枢纽与密态管道。

技术信任需要完备的信任链:
运维权限最小化: 只允许预期内的行为可以执行;
完备的信任链: 从信任根、硬件平台、操作系统到应用系统整个链路的可信认证;
远程验证: 能够远程验证云上运行环境,甚至执行环境安全隔离;
可信安全模块: 使用基于硬件的可信安全模块

三、数据要素流通对隐私计算的期望

1、隐私计算内涵在扩大: 原始数据不出域,数据可用不可见、数据使用可控可计量、数据可算不可识。
2、隐私计算产品需要通用的安全分级和评测方式。
3、隐私计算需要通过开源降低门槛促进数据安全流通: 让更多企业轻松使用隐私计算技术、让技术产品的安全可信性更透明、促进数据要素流转中事实标准的发展。

四、隐私计算开源助力数据要素流通

隐语SecretFlow: 其以安全、开放为核心设计理念,支持MPC、FL、TEE 等主流隐私计算技术,融合产学研生态共创能力,助力隐私计算更广泛应用到AI、数据分析等场景中,解决隐私保护和数据孤岛等行业痛点。
优点: 统一架构、原生应用、开放拓展、性能卓越。

隐语开源经过多轮技术验证:

相关推荐
CoderJia程序员甲13 分钟前
GitHub 热榜项目 - 日榜(2025-10-23)
ai·开源·大模型·github·ai教程
FlagOS智算系统软件栈1 小时前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
报错小能手6 小时前
项目——基于C/S架构的预约系统平台 (1)
开发语言·c++·笔记·学习·架构
说私域6 小时前
流量转化与生态重构:“开源AI智能名片链动2+1模式S2B2C商城小程序”对直播电商的范式革新
人工智能·重构·开源
赤月幼狼7 小时前
clickhouse学习笔记(一)基础概念与架构
笔记·学习·clickhouse
ajassi20008 小时前
开源 Linux 服务器与中间件(十一)Emqx服务器消息的订阅和发送(mqtt测试)
linux·服务器·开源
Yupureki8 小时前
从零开始的C++学习生活 13:红黑树全面解析
c语言·数据结构·c++·学习·visual studio
AhriProGramming9 小时前
Python学习快速上手文章推荐(持续更新)
开发语言·python·学习·1024程序员节
泡泡鱼(敲代码中)9 小时前
数据结构(顺序表和链表)
笔记·学习·算法
无妄无望10 小时前
在没有网络的环境下安装包pymysql
学习·docker