SQL server 里按年按月进行累计值统计

SQL server 里按年按月进行累计值统计

即 4月 算从1~4月的累计值

参考如下:

select dt,

account_set_ord,

account_set_title,

account_ord,

account_title,

year,

ym,

cumulative_money_J,

cumulative_money_D,

row_num

from (

SELECT

dt,

account_set_ord,

account_set_title,

account_ord,

account_title,

year,

ym,

cumulative_money_J,

cumulative_money_D,

ROW_NUMBER() OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year, ym,cumulative_money_J, cumulative_money_D ORDER BY ym) as row_num

from (

SELECT

@DateThreshold as dt,

account_set_ord,

account_set_title,

account_ord,

account_title,

year,

ym,

SUM(income_money) OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year ORDER BY ym) AS cumulative_money_J,

SUM(expense_money) OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year ORDER BY ym) AS cumulative_money_D

FROM dws_finance_fund_balance_income_expense_month

WHERE dt = @DateThreshold

) t1

) t4

where t4.row_num = 1

采用 SUM(expense_money) OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year ORDER BY ym) 来计算累计值

通过 ROW_NUMBER() OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year, ym,cumulative_money_J, cumulative_money_D ORDER BY ym) as row_num 来进行过滤

复制代码
INSERT INTO dbo.dws_finance_fund_balance_month ([dt],[year],[quarter],[ym],[account_set_ord],[account_set_title],[account_ord],[account_title],[income_money],[cumulative_income_money],[expense_money],[cumulative_expense_money])
		SELECT t1.[dt]
			  ,t1.[year]
			  ,t1.[quarter]
			  ,t1.[ym]
			  ,t1.[account_set_ord]
			  ,t1.[account_set_title]
			  ,t1.[account_ord]
			  ,t1.[account_title]
			  ,t1.[income_money]
			  ,t2.cumulative_money_J
			  ,t1.[expense_money]
			  ,t2.cumulative_money_D
		from ( select 
				   [dt]
				  ,[year]
				  ,[quarter]
				  ,[ym]
				  ,[account_set_ord]
				  ,[account_set_title]
				  ,[account_ord]
				  ,[account_title]
				  ,[income_money]
				  ,[expense_money]
			  from dbo.dws_finance_fund_balance_income_expense_month where dt = @DateThreshold
		)t1
		left join (
				   select dt,
						account_set_ord, 
						account_set_title, 
						account_ord,
						account_title,
						year,
						ym,
						cumulative_money_J,
						cumulative_money_D,
						row_num
				  from ( 
						SELECT 
							dt,
							account_set_ord, 
							account_set_title, 
							account_ord,
							account_title,
							year,
							ym,
							cumulative_money_J,
							cumulative_money_D,
							ROW_NUMBER() OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year, ym,cumulative_money_J, cumulative_money_D ORDER BY ym) as row_num
					  from ( 
							SELECT 
									@DateThreshold as dt,
									account_set_ord, 
									account_set_title, 
									account_ord,
									account_title,
									year,
									ym,
									SUM(income_money) OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year ORDER BY ym) AS cumulative_money_J,
									SUM(expense_money) OVER (PARTITION BY account_set_ord, account_set_title, account_ord, account_title, year ORDER BY ym) AS cumulative_money_D			
							FROM dws_finance_fund_balance_income_expense_month
							WHERE dt = @DateThreshold
					  ) t1
				  ) t4
				  where t4.row_num = 1
		) t2
		on t1.account_set_ord = t2.account_set_ord and t1.account_ord = t2.account_ord and t1.year = t2.year and t1.ym = t2.ym
相关推荐
远方16093 分钟前
0x-4-Oracle 23 ai-sqlcl 25.1.1 独立安装-配置和优化
数据库·ci/cd·oracle
远方160938 分钟前
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
数据库·ide·ai·oracle
余+1853816280039 分钟前
短视频矩阵系统文案创作功能开发实践,定制化开发
大数据·人工智能
喵叔哟2 小时前
第1章:Neo4j简介与图数据库基础
数据库·oracle·neo4j
喵叔哟2 小时前
第6章:Neo4j数据导入与导出
数据库·oracle·neo4j
甜甜的资料库2 小时前
基于微信小程序的睡眠宝系统源码数据库文档
数据库·微信小程序·小程序
代码老y2 小时前
Redis:现代应用开发的高效内存数据存储利器
数据库·redis·缓存
远方16093 小时前
15-Oracle 23ai Vector Search Similarity Search-向量相似性和混合搜索-实操
数据库·ai·oracle
zz0723203 小时前
第二十周:Redis(二)
数据库·redis·缓存
阿里云大数据AI技术4 小时前
一体系数据平台的进化:基于阿里云 EMR Serverless Spark的持续演进
大数据·spark·serverless