使用GPT2预训练模型的方法

使用GPT2预训练模型的方法

flyfish

transformers库对所有模型统一的API

安装

复制代码
pip install transformers

GPT2模型主要包括以下文件

复制代码
config.json
merges.txt
model.safetensors
tokenizer.json
tokenizer_config.json
vocab.json

模型所在目录

复制代码
\.cache\huggingface\hub\models--openai-community--gpt2\blobs

模型链接

复制代码
.cache\huggingface\hub\models--openai-community--gpt2\snapshots

config.json [..\..\blobs\10c66461e4c109db5a2196bff4bb59be30396ed8]
merges.txt [..\..\blobs\226b0752cac7789c48f0cb3ec53eda48b7be36cc]
model.safetensors [..\..\blobs\248dfc3911869ec493c76e65bf2fcf7f615828b0254c12b473182f0f81d3a707]
tokenizer.json [..\..\blobs\4b988bccc9dc5adacd403c00b4704976196548f8]
tokenizer_config.json [..\..\blobs\be4d21d94f3b4687e5a54d84bf6ab46ed0f8defd]
vocab.json [..\..\blobs\1f1d9aaca301414e7f6c9396df506798ff4eb9a6]

可以到这里下载

复制代码
链接:https://pan.baidu.com/s/1A8MLV_BxcJLEIr4_oOVsUQ 
提取码:0000

简单示例

py 复制代码
from transformers import AutoTokenizer, GPT2Model
import torch

tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = GPT2Model.from_pretrained("openai-community/gpt2")

inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state

neuralforecast 的用法

py 复制代码
from neuralforecast import NeuralForecast
from neuralforecast.models import TimeLLM
from neuralforecast.utils import AirPassengersPanel, augment_calendar_df

from transformers import GPT2Config, GPT2Model, GPT2Tokenizer

AirPassengersPanel, calendar_cols = augment_calendar_df(df=AirPassengersPanel, freq='M')

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test

gpt2_config = GPT2Config.from_pretrained('openai-community/gpt2')
gpt2 = GPT2Model.from_pretrained('openai-community/gpt2', config=gpt2_config)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('openai-community/gpt2')

prompt_prefix = "The dataset contains data on monthly air passengers. There is a yearly seasonality"

timellm = TimeLLM(h=12,
                 input_size=36,
                 llm=gpt2,
                 llm_config=gpt2_config,
                 llm_tokenizer=gpt2_tokenizer,
                 prompt_prefix=prompt_prefix,
                 batch_size=24,
                 windows_batch_size=24)

nf = NeuralForecast(
    models=[timellm],
    freq='M'
)

nf.fit(df=Y_train_df, val_size=12)
forecasts = nf.predict(futr_df=Y_test_df)
相关推荐
蹦蹦跳跳真可爱5893 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding
独自破碎E4 小时前
解释一下RAG中的Rerank
gpt·语言模型
迈火12 小时前
ComfyUI - ELLA:解锁ComfyUI图像生成新境界的神奇插件
人工智能·gpt·stable diffusion·aigc·音视频·midjourney·llama
程序员佳佳16 小时前
026年AI开发实战:从GPT-5.2到Gemini-3,如何构建下一代企业级Agent架构?
开发语言·python·gpt·重构·api·ai写作·agi
KG_LLM图谱增强大模型16 小时前
悬壶GPT:中医药领域大语言模型的参数高效微调
人工智能·gpt·语言模型·大模型·知识图谱
未羽出衫1 天前
DB-GPT本地模型+tuGragh安装使用
数据库·gpt
蹦蹦跳跳真可爱5892 天前
Python----大模型(GPT-2模型训练,预测)
开发语言·人工智能·pytorch·python·gpt·深度学习·embedding
村口曹大爷3 天前
【深度】OpenAI 推理架构演进:GPT-5.2(Internal版)性能实测与开发者接入路径分析
gpt·ai·chatgpt·架构·gpt5.2
百***78753 天前
GPT-5.2 快速接入指南(3步极简落地)
gpt
伟大的大威4 天前
实战:在 NVIDIA Blackwell GB10 上部署 GPT-OSS 120B (MXFP4) 全流程避坑指南
gpt