聊聊Python多进程

写在前面

之前一直没关注过多进程这方面,朋友问起时感觉很奇怪,因为进程是资源分配的最小单元,线程是运算调度的最小单元,代码程序本质上只是一些文本文件,给他分配对应的资源运行起来才是进程,那为什么会有多进程呢?看了看文档发现原来是通过创建子进程并管理来实现多进程。

多进程和多线程有什么区别?

虽然同样是并发,同样是均衡CPU与IO之间差距过大的运行速率,多线程是多个线程共享一个CPU,好处是线程间通信或切换很容易,坏处是目前CPU都是多核的,很容易出现一核有难八核围观的问题,同时python具有GIL(全局锁),让每个CPU在同一时间只能执行一个线程,这让我们很难实现并行计算。而多进程避免了这个问题,同时也要注意,多个进程之间的通信与切换成本更大。

因此python的多线程并不适合CPU密集型的任务,更适合IO密集型的任务

fork vs spawn

fork速度会更快,因为他是对父进程的整个虚拟内存进行写时复制,包括已经初始化过的python解释器,内存中构造的对象,而不需要识别哪些资源是必要的,仅将内存页作为一个整体复制。但这也会带来问题,比如由于fork不会复制父进程的线程,如果其他线程持有的存储在内存中的锁也被复制的话,但是因为没有对应的线程进行解锁,就会导致死锁。

spawn从头开始启动一个python子进程,所以安全,不继承父进程的资源,所以也不臃肿,但是启动会较慢。

进程池

进程池Pool 会帮我们实现简单的多进程任务,我们可以通过apply() 和map() 来执行任务并阻塞直到子进程计算完成任务。看下官网代码:

Python 复制代码
import multiprocessing

def function_square(data):
    result = data*data
    return result

if __name__ == '__main__':
    inputs = list(range(100))
    pool = multiprocessing.Pool(processes=4)
    pool_outputs = pool.map(function_square, inputs)
    pool.close()
    pool.join()
    print ('Pool    :', pool_outputs)

map可以将可迭代的数据的每一个元素作为一个任务来执行。任务执行结束后可以通过 pool.close() 告诉进程池不再接受新的任务,而pool.join()会一直阻塞,知道进程池中的所有工作进程都结束。

有点反常,在使用map的情况下是否不再需要join?

笔者自己试了下,确实不需要在pool.map后添加join。

相关推荐
MZ_ZXD00110 分钟前
springboot汽车租赁服务管理系统-计算机毕业设计源码58196
java·c++·spring boot·python·django·flask·php
A 计算机毕业设计-小途1 小时前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
你的人类朋友4 小时前
说说git的变基
前端·git·后端
阿杆4 小时前
玩转 Amazon ElastiCache 免费套餐:小白也能上手
后端
念念01074 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
阿杆4 小时前
无服务器每日自动推送 B 站热门视频
后端
云天徽上5 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
☺����5 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
王者鳜錸6 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化
公众号_醉鱼Java6 小时前
Elasticsearch 字段膨胀使用 Flattened类型
后端·掘金·金石计划