聊聊Python多进程

写在前面

之前一直没关注过多进程这方面,朋友问起时感觉很奇怪,因为进程是资源分配的最小单元,线程是运算调度的最小单元,代码程序本质上只是一些文本文件,给他分配对应的资源运行起来才是进程,那为什么会有多进程呢?看了看文档发现原来是通过创建子进程并管理来实现多进程。

多进程和多线程有什么区别?

虽然同样是并发,同样是均衡CPU与IO之间差距过大的运行速率,多线程是多个线程共享一个CPU,好处是线程间通信或切换很容易,坏处是目前CPU都是多核的,很容易出现一核有难八核围观的问题,同时python具有GIL(全局锁),让每个CPU在同一时间只能执行一个线程,这让我们很难实现并行计算。而多进程避免了这个问题,同时也要注意,多个进程之间的通信与切换成本更大。

因此python的多线程并不适合CPU密集型的任务,更适合IO密集型的任务

fork vs spawn

fork速度会更快,因为他是对父进程的整个虚拟内存进行写时复制,包括已经初始化过的python解释器,内存中构造的对象,而不需要识别哪些资源是必要的,仅将内存页作为一个整体复制。但这也会带来问题,比如由于fork不会复制父进程的线程,如果其他线程持有的存储在内存中的锁也被复制的话,但是因为没有对应的线程进行解锁,就会导致死锁。

spawn从头开始启动一个python子进程,所以安全,不继承父进程的资源,所以也不臃肿,但是启动会较慢。

进程池

进程池Pool 会帮我们实现简单的多进程任务,我们可以通过apply() 和map() 来执行任务并阻塞直到子进程计算完成任务。看下官网代码:

Python 复制代码
import multiprocessing

def function_square(data):
    result = data*data
    return result

if __name__ == '__main__':
    inputs = list(range(100))
    pool = multiprocessing.Pool(processes=4)
    pool_outputs = pool.map(function_square, inputs)
    pool.close()
    pool.join()
    print ('Pool    :', pool_outputs)

map可以将可迭代的数据的每一个元素作为一个任务来执行。任务执行结束后可以通过 pool.close() 告诉进程池不再接受新的任务,而pool.join()会一直阻塞,知道进程池中的所有工作进程都结束。

有点反常,在使用map的情况下是否不再需要join?

笔者自己试了下,确实不需要在pool.map后添加join。

相关推荐
6***83051 分钟前
SpringBoot教程(三十二) SpringBoot集成Skywalking链路跟踪
spring boot·后端·skywalking
hui函数11 分钟前
Python系列Bug修复|如何解决 pip install 安装报错 Backend ‘setuptools.build_meta’ 不可用 问题
python·bug·pip
谢的2元王国12 分钟前
prompt工程逐渐成为工作流的重要一部分:以下是一套多节点新闻处理外加事实增强的文章报告日志记录
python
寻星探路14 分钟前
【算法通关】双指针技巧深度解析:从基础到巅峰(Java 最优解)
java·开发语言·人工智能·python·算法·ai·指针
向上的车轮16 分钟前
如何选择Python IDE?
开发语言·ide·python
小北方城市网23 分钟前
微服务接口设计实战指南:高可用、易维护的接口设计原则与规范
java·大数据·运维·python·微服务·fastapi·数据库架构
有追求的开发者25 分钟前
2025 年终总结:一个 Python DevOps 的成长之路
后端
有追求的开发者29 分钟前
别再等缓存自己"热"起来了!Python后端必会的预热技巧 🚀
后端
乌暮29 分钟前
JavaEE初阶---《JUC 并发编程完全指南:组件用法、原理剖析与面试应答》
java·开发语言·后端·学习·面试·java-ee