聊聊Python多进程

写在前面

之前一直没关注过多进程这方面,朋友问起时感觉很奇怪,因为进程是资源分配的最小单元,线程是运算调度的最小单元,代码程序本质上只是一些文本文件,给他分配对应的资源运行起来才是进程,那为什么会有多进程呢?看了看文档发现原来是通过创建子进程并管理来实现多进程。

多进程和多线程有什么区别?

虽然同样是并发,同样是均衡CPU与IO之间差距过大的运行速率,多线程是多个线程共享一个CPU,好处是线程间通信或切换很容易,坏处是目前CPU都是多核的,很容易出现一核有难八核围观的问题,同时python具有GIL(全局锁),让每个CPU在同一时间只能执行一个线程,这让我们很难实现并行计算。而多进程避免了这个问题,同时也要注意,多个进程之间的通信与切换成本更大。

因此python的多线程并不适合CPU密集型的任务,更适合IO密集型的任务

fork vs spawn

fork速度会更快,因为他是对父进程的整个虚拟内存进行写时复制,包括已经初始化过的python解释器,内存中构造的对象,而不需要识别哪些资源是必要的,仅将内存页作为一个整体复制。但这也会带来问题,比如由于fork不会复制父进程的线程,如果其他线程持有的存储在内存中的锁也被复制的话,但是因为没有对应的线程进行解锁,就会导致死锁。

spawn从头开始启动一个python子进程,所以安全,不继承父进程的资源,所以也不臃肿,但是启动会较慢。

进程池

进程池Pool 会帮我们实现简单的多进程任务,我们可以通过apply() 和map() 来执行任务并阻塞直到子进程计算完成任务。看下官网代码:

Python 复制代码
import multiprocessing

def function_square(data):
    result = data*data
    return result

if __name__ == '__main__':
    inputs = list(range(100))
    pool = multiprocessing.Pool(processes=4)
    pool_outputs = pool.map(function_square, inputs)
    pool.close()
    pool.join()
    print ('Pool    :', pool_outputs)

map可以将可迭代的数据的每一个元素作为一个任务来执行。任务执行结束后可以通过 pool.close() 告诉进程池不再接受新的任务,而pool.join()会一直阻塞,知道进程池中的所有工作进程都结束。

有点反常,在使用map的情况下是否不再需要join?

笔者自己试了下,确实不需要在pool.map后添加join。

相关推荐
砍材农夫5 分钟前
threadlocal
后端
gpfyyds6668 分钟前
Python代码练习
开发语言·python
神奇小汤圆21 分钟前
告别手写HTTP请求!Spring Feign 调用原理深度拆解:从源码到实战,一篇搞懂
后端
布列瑟农的星空26 分钟前
前端都能看懂的Rust入门教程(三)——控制流语句
前端·后端·rust
汤姆yu33 分钟前
基于springboot的尿毒症健康管理系统
java·spring boot·后端
暮色妖娆丶37 分钟前
Spring 源码分析 单例 Bean 的创建过程
spring boot·后端·spring
野犬寒鸦37 分钟前
从零起步学习JVM || 第一章:类加载器与双亲委派机制模型详解
java·jvm·数据库·后端·学习
Java编程爱好者1 小时前
Seata实现分布式事务:大白话全剖析(核心讲透AT模式)
后端
神奇小汤圆1 小时前
比MySQL快800倍的数据库:ClickHouse的性能秘密
后端
aiguangyuan1 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp