【NLP】从变形金刚到Transfomer 01

Transformer是一种非常强大的模型,在自然语言处理(NLP)领域里引起了一场革命。

"从变形金刚到技术革命家,Transformer不再仅是儿时屏幕上的英雄。🤖✨ 在今天的AI领域,它变身成为自然语言处理的超级英雄,领导着一场深刻的学习革命。🚀💡 现在我们一起探索这个使机器理解人类语言成为可能的技术奇迹。#NLP #AI革命 #Transformer"


目录

[01 基本概念:](#01 基本概念:)

[02 关键特点:](#02 关键特点:)

[03 应用领域:](#03 应用领域:)

[04 编码器原理](#04 编码器原理)

[4.1 位置编码(Position Embedding)](#4.1 位置编码(Position Embedding))

[4.2 自注意力机制(self-attention)](#4.2 自注意力机制(self-attention))

[4.3 多头机制 multi-head](#4.3 多头机制 multi-head)

[4.4 残差机制](#4.4 残差机制)

[4.5 Feed Forward](#4.5 Feed Forward)


01 基本概念:

Tansformer模型最初是在2017年由谷歌团队发表的论文《Attention is All You Need》中被提出的。它的核心思想是利用 "自注意力(Self-Attention)"机制来处理序列数据,这让它 处理长距离依赖问题时能欧表现出非常优异的性能。与此同时,Transformer模型的并行处理能力**,大大减少了训练时间。

02 关键特点:

  1. 自注意力机制(self-Attention):使模型能够关注序列中的不同位置,为每个位置的词生成上下文相关的表示。
  2. 多头注意力(Multi-Head Attentio):通过并行学习序列中不同子空间的信息,增强了模型捕捉不同上下文信息的能力。
  3. 位置编码(Positional Encodding):由于Transformer完全基于注意力机制,没有循环(RNN)或卷积(CNN)结构,它通过位置编码来了解单词在句子中的位置关系。
  4. 层归一化(Layer Normalization)残差连接(Residul Connection):这些技术帮助模型在训练深层网络时保持稳定,加速收敛。

03 应用领域:

Transformer模型的出现推动了许多NLP任务的发展

  • 机器翻译
  • 文本摘要
  • 问答系统和文本生成等
  • 它也是后来诸如Bert、GPT系列强大模型的基础。

04 编码器原理

4.1 位置编码(Position Embedding)

在RNN模型训练过程中,需要对词进行向量处理,通过RNN的特殊结构,可以使得模型具备短期记忆的能力。

【深度学习】手动实现RNN循环神经网络-CSDN博客

Transformer中为了更好地记录位置信息,需要在词向量的基础上加上位置编码

这样词向量就能够代入语序信息,加和之后再做一下归一化,能够使模型能加稳定

4.2 自注意力机制(self-attention)

假设通过向量化我们就能够得到一个6*768的矩阵X,分别通过三个不同的可训练的参数矩阵W,得到三个矩阵:Q,K,V.

带入公式:Q乘以K的转置可以得到一个文本长度*文本长度的矩阵,以我们的输入为例就是得到一个6*6的矩阵.除以根号dk再过一个激活函数softmax,最后再乘以一个V.最后我们还会得到一个文本长度乘以向量维度的矩阵.这样操作的原因是为了减小值,让模型更有可能为每一个字分配上概率.

4.3 多头机制 multi-head

所谓多头机制,类似机器学习中的模型集成,将文本长度词向量维度的矩阵切分成头数为n,得到若干个,文本长度(词向量维度/头数)的矩阵.

比如6**768的矩阵,划分为12个6**64的矩阵.分别做自注意力机制.

最后将得到的结果拼起来

4.4 残差机制

将过self-atention的矩阵和输入矩阵进行相加,有助于保留过模型前的信息,然后做归一化处理

4.5 Feed Forward

就是两个线性层,过一层之后加一个激活函数,第一个线性层会将原先的维度映射为原来的四倍,后一个线性层再将矩阵映射回原来的维度.就是为了增加可训练的参数.

后面可以堆很多层Transforme。bert中就堆叠了12层.就是为了大力出奇迹

后序还会更新关于解码器部分的内容欢迎关注


以上

君子坐而论道,少年起而行之,共勉

相关推荐
井底哇哇5 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证5 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩6 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控6 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天6 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1067 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥7 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
说私域8 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源
程序猿阿伟8 小时前
《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
人工智能·华为·harmonyos
2401_897579658 小时前
AI赋能Flutter开发:ScriptEcho助你高效构建跨端应用
前端·人工智能·flutter