【NLP】从变形金刚到Transfomer 01

Transformer是一种非常强大的模型,在自然语言处理(NLP)领域里引起了一场革命。

"从变形金刚到技术革命家,Transformer不再仅是儿时屏幕上的英雄。🤖✨ 在今天的AI领域,它变身成为自然语言处理的超级英雄,领导着一场深刻的学习革命。🚀💡 现在我们一起探索这个使机器理解人类语言成为可能的技术奇迹。#NLP #AI革命 #Transformer"


目录

[01 基本概念:](#01 基本概念:)

[02 关键特点:](#02 关键特点:)

[03 应用领域:](#03 应用领域:)

[04 编码器原理](#04 编码器原理)

[4.1 位置编码(Position Embedding)](#4.1 位置编码(Position Embedding))

[4.2 自注意力机制(self-attention)](#4.2 自注意力机制(self-attention))

[4.3 多头机制 multi-head](#4.3 多头机制 multi-head)

[4.4 残差机制](#4.4 残差机制)

[4.5 Feed Forward](#4.5 Feed Forward)


01 基本概念:

Tansformer模型最初是在2017年由谷歌团队发表的论文《Attention is All You Need》中被提出的。它的核心思想是利用 "自注意力(Self-Attention)"机制来处理序列数据,这让它 处理长距离依赖问题时能欧表现出非常优异的性能。与此同时,Transformer模型的并行处理能力**,大大减少了训练时间。

02 关键特点:

  1. 自注意力机制(self-Attention):使模型能够关注序列中的不同位置,为每个位置的词生成上下文相关的表示。
  2. 多头注意力(Multi-Head Attentio):通过并行学习序列中不同子空间的信息,增强了模型捕捉不同上下文信息的能力。
  3. 位置编码(Positional Encodding):由于Transformer完全基于注意力机制,没有循环(RNN)或卷积(CNN)结构,它通过位置编码来了解单词在句子中的位置关系。
  4. 层归一化(Layer Normalization)残差连接(Residul Connection):这些技术帮助模型在训练深层网络时保持稳定,加速收敛。

03 应用领域:

Transformer模型的出现推动了许多NLP任务的发展

  • 机器翻译
  • 文本摘要
  • 问答系统和文本生成等
  • 它也是后来诸如Bert、GPT系列强大模型的基础。

04 编码器原理

4.1 位置编码(Position Embedding)

在RNN模型训练过程中,需要对词进行向量处理,通过RNN的特殊结构,可以使得模型具备短期记忆的能力。

【深度学习】手动实现RNN循环神经网络-CSDN博客

Transformer中为了更好地记录位置信息,需要在词向量的基础上加上位置编码

这样词向量就能够代入语序信息,加和之后再做一下归一化,能够使模型能加稳定

4.2 自注意力机制(self-attention)

假设通过向量化我们就能够得到一个6*768的矩阵X,分别通过三个不同的可训练的参数矩阵W,得到三个矩阵:Q,K,V.

带入公式:Q乘以K的转置可以得到一个文本长度*文本长度的矩阵,以我们的输入为例就是得到一个6*6的矩阵.除以根号dk再过一个激活函数softmax,最后再乘以一个V.最后我们还会得到一个文本长度乘以向量维度的矩阵.这样操作的原因是为了减小值,让模型更有可能为每一个字分配上概率.

4.3 多头机制 multi-head

所谓多头机制,类似机器学习中的模型集成,将文本长度词向量维度的矩阵切分成头数为n,得到若干个,文本长度(词向量维度/头数)的矩阵.

比如6**768的矩阵,划分为12个6**64的矩阵.分别做自注意力机制.

最后将得到的结果拼起来

4.4 残差机制

将过self-atention的矩阵和输入矩阵进行相加,有助于保留过模型前的信息,然后做归一化处理

4.5 Feed Forward

就是两个线性层,过一层之后加一个激活函数,第一个线性层会将原先的维度映射为原来的四倍,后一个线性层再将矩阵映射回原来的维度.就是为了增加可训练的参数.

后面可以堆很多层Transforme。bert中就堆叠了12层.就是为了大力出奇迹

后序还会更新关于解码器部分的内容欢迎关注


以上

君子坐而论道,少年起而行之,共勉

相关推荐
985小水博一枚呀10 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan11 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀15 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路24 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子30 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川5 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程