【NLP】从变形金刚到Transfomer 01

Transformer是一种非常强大的模型,在自然语言处理(NLP)领域里引起了一场革命。

"从变形金刚到技术革命家,Transformer不再仅是儿时屏幕上的英雄。🤖✨ 在今天的AI领域,它变身成为自然语言处理的超级英雄,领导着一场深刻的学习革命。🚀💡 现在我们一起探索这个使机器理解人类语言成为可能的技术奇迹。#NLP #AI革命 #Transformer"


目录

[01 基本概念:](#01 基本概念:)

[02 关键特点:](#02 关键特点:)

[03 应用领域:](#03 应用领域:)

[04 编码器原理](#04 编码器原理)

[4.1 位置编码(Position Embedding)](#4.1 位置编码(Position Embedding))

[4.2 自注意力机制(self-attention)](#4.2 自注意力机制(self-attention))

[4.3 多头机制 multi-head](#4.3 多头机制 multi-head)

[4.4 残差机制](#4.4 残差机制)

[4.5 Feed Forward](#4.5 Feed Forward)


01 基本概念:

Tansformer模型最初是在2017年由谷歌团队发表的论文《Attention is All You Need》中被提出的。它的核心思想是利用 "自注意力(Self-Attention)"机制来处理序列数据,这让它 处理长距离依赖问题时能欧表现出非常优异的性能。与此同时,Transformer模型的并行处理能力**,大大减少了训练时间。

02 关键特点:

  1. 自注意力机制(self-Attention):使模型能够关注序列中的不同位置,为每个位置的词生成上下文相关的表示。
  2. 多头注意力(Multi-Head Attentio):通过并行学习序列中不同子空间的信息,增强了模型捕捉不同上下文信息的能力。
  3. 位置编码(Positional Encodding):由于Transformer完全基于注意力机制,没有循环(RNN)或卷积(CNN)结构,它通过位置编码来了解单词在句子中的位置关系。
  4. 层归一化(Layer Normalization)残差连接(Residul Connection):这些技术帮助模型在训练深层网络时保持稳定,加速收敛。

03 应用领域:

Transformer模型的出现推动了许多NLP任务的发展

  • 机器翻译
  • 文本摘要
  • 问答系统和文本生成等
  • 它也是后来诸如Bert、GPT系列强大模型的基础。

04 编码器原理

4.1 位置编码(Position Embedding)

在RNN模型训练过程中,需要对词进行向量处理,通过RNN的特殊结构,可以使得模型具备短期记忆的能力。

【深度学习】手动实现RNN循环神经网络-CSDN博客

Transformer中为了更好地记录位置信息,需要在词向量的基础上加上位置编码

这样词向量就能够代入语序信息,加和之后再做一下归一化,能够使模型能加稳定

4.2 自注意力机制(self-attention)

假设通过向量化我们就能够得到一个6*768的矩阵X,分别通过三个不同的可训练的参数矩阵W,得到三个矩阵:Q,K,V.

带入公式:Q乘以K的转置可以得到一个文本长度*文本长度的矩阵,以我们的输入为例就是得到一个6*6的矩阵.除以根号dk再过一个激活函数softmax,最后再乘以一个V.最后我们还会得到一个文本长度乘以向量维度的矩阵.这样操作的原因是为了减小值,让模型更有可能为每一个字分配上概率.

4.3 多头机制 multi-head

所谓多头机制,类似机器学习中的模型集成,将文本长度词向量维度的矩阵切分成头数为n,得到若干个,文本长度(词向量维度/头数)的矩阵.

比如6**768的矩阵,划分为12个6**64的矩阵.分别做自注意力机制.

最后将得到的结果拼起来

4.4 残差机制

将过self-atention的矩阵和输入矩阵进行相加,有助于保留过模型前的信息,然后做归一化处理

4.5 Feed Forward

就是两个线性层,过一层之后加一个激活函数,第一个线性层会将原先的维度映射为原来的四倍,后一个线性层再将矩阵映射回原来的维度.就是为了增加可训练的参数.

后面可以堆很多层Transforme。bert中就堆叠了12层.就是为了大力出奇迹

后序还会更新关于解码器部分的内容欢迎关注


以上

君子坐而论道,少年起而行之,共勉

相关推荐
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员1 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机1 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc2 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客2 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路2 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客2 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿2 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻2 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程3 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer