音频干扰检测(时域方法)

请注意注释掉的代码:逐个包络比对就不能加窗了。

import librosa

import numpy as np

from scipy.signal import windows

import matplotlib.pyplot as plt

读取音频文件

audio_file = 'sine.wav'

signal, sample_rate = librosa.load(audio_file, sr=None, mono=False)

检查通道数并处理信号

if signal.ndim > 1:

num_channels = signal.shape[0]

print(f"音频文件有 {num_channels} 个通道")

如果是4通道,取第X个通道进行处理,这里示例取第4个通道(索引为3)

if num_channels == 2:

signal = signal[0, :]

else:

如果信号是单通道,直接使用

print("音频文件是单通道")

计算每个周期的采样点数

cycle_samples = int(sample_rate / 1000)

# 创建汉宁窗

window_length = cycle_samples * 1 # 窗长度为10个周期

window = windows.hann(window_length)

# 对信号的开头和结尾分别应用汉宁窗

windowed_signal = signal.copy()

windowed_signal[:window_length//2] *= window[:window_length//2]

windowed_signal[-window_length//2:] *= window[window_length//2:]

计算周期数

num_cycles = len(signal) // cycle_samples

存储异常周期的时间点和幅值

anomaly_times = []

anomaly_amplitudes = []

逐个周期比较包络

for i in range(num_cycles - 1):

start = i * cycle_samples

end = (i + 1) * cycle_samples

current_cycle = signal[start:end]

next_cycle = signal[end:end+cycle_samples]

计算当前周期和下一个周期的包络差异

diff = np.abs(current_cycle - next_cycle)

如果差异大于阈值,则认为是异常周期

if np.max(diff) > 0.1:

anomaly_time = start / sample_rate

anomaly_times.append(anomaly_time)

anomaly_amplitudes.append(np.max(np.abs(current_cycle)))

打印异常周期的时间点和幅值

for time, amplitude in zip(anomaly_times, anomaly_amplitudes):

print(f"异常周期时间点: {time:.3f}s, 幅值: {amplitude:.3f}")

绘制时域波形图

time = np.arange(len(signal)) / sample_rate

plt.figure(figsize=(8,4))

plt.plot(time, signal, label='Signal')

标注异常周期

for t in anomaly_times:

plt.axvline(x=t, color='r', linestyle='--', label='Anomaly Detected')

plt.xlabel('Time(s)')

plt.ylabel('Amplitude')

plt.title('Windowed Waveform with Anomalies Highlighted')

plt.legend()

plt.show()

相关推荐
无敌最俊朗@5 小时前
视频时间戳PTS和DTS的区别
人工智能·音视频
撬动未来的支点6 小时前
【音视频】H264四种配置级别
音视频
无敌最俊朗@6 小时前
音视频入门核心概念:容器、编码、流与时间戳
音视频
sukida1006 小时前
在openSUSE-Leap-15.6-DVD-x86_64-Media自制应用软件离线包——备份91个视频解码器的rpm包
数据库·redis·音视频
zymill7 小时前
hysAnalyser --- 支持UDP实时流分析和录制功能
udp·音视频·实时音视频·ts流分析·mpegts录制
DogDaoDao11 小时前
OpenCV音视频编解码器详解
人工智能·opencv·音视频·视频编解码·h264·h265·音视频编解码
羊羊小栈11 小时前
基于YOLO+多模态大模型+人脸识别+视频检索的智慧公安综合研判平台(vue+flask+AI算法)
vue.js·人工智能·yolo·flask·毕业设计·音视频·大作业
八月的雨季 最後的冰吻21 小时前
FFmpeg --15-视频解码: AVIO内存输入模式分析
ffmpeg·音视频
卍郝凝卍1 天前
NVR(网络视频录像机)和视频网关的工作方式
网络·图像处理·物联网·音视频·视频解决方案
努力犯错1 天前
Google Veo 3.1 提示词生成器:让 AI 视频创作效率翻倍的免费工具
人工智能·计算机视觉·语言模型·开源·音视频