音频干扰检测(时域方法)

请注意注释掉的代码:逐个包络比对就不能加窗了。

import librosa

import numpy as np

from scipy.signal import windows

import matplotlib.pyplot as plt

读取音频文件

audio_file = 'sine.wav'

signal, sample_rate = librosa.load(audio_file, sr=None, mono=False)

检查通道数并处理信号

if signal.ndim > 1:

num_channels = signal.shape[0]

print(f"音频文件有 {num_channels} 个通道")

如果是4通道,取第X个通道进行处理,这里示例取第4个通道(索引为3)

if num_channels == 2:

signal = signal[0, :]

else:

如果信号是单通道,直接使用

print("音频文件是单通道")

计算每个周期的采样点数

cycle_samples = int(sample_rate / 1000)

# 创建汉宁窗

window_length = cycle_samples * 1 # 窗长度为10个周期

window = windows.hann(window_length)

# 对信号的开头和结尾分别应用汉宁窗

windowed_signal = signal.copy()

windowed_signal[:window_length//2] *= window[:window_length//2]

windowed_signal[-window_length//2:] *= window[window_length//2:]

计算周期数

num_cycles = len(signal) // cycle_samples

存储异常周期的时间点和幅值

anomaly_times = []

anomaly_amplitudes = []

逐个周期比较包络

for i in range(num_cycles - 1):

start = i * cycle_samples

end = (i + 1) * cycle_samples

current_cycle = signal[start:end]

next_cycle = signal[end:end+cycle_samples]

计算当前周期和下一个周期的包络差异

diff = np.abs(current_cycle - next_cycle)

如果差异大于阈值,则认为是异常周期

if np.max(diff) > 0.1:

anomaly_time = start / sample_rate

anomaly_times.append(anomaly_time)

anomaly_amplitudes.append(np.max(np.abs(current_cycle)))

打印异常周期的时间点和幅值

for time, amplitude in zip(anomaly_times, anomaly_amplitudes):

print(f"异常周期时间点: {time:.3f}s, 幅值: {amplitude:.3f}")

绘制时域波形图

time = np.arange(len(signal)) / sample_rate

plt.figure(figsize=(8,4))

plt.plot(time, signal, label='Signal')

标注异常周期

for t in anomaly_times:

plt.axvline(x=t, color='r', linestyle='--', label='Anomaly Detected')

plt.xlabel('Time(s)')

plt.ylabel('Amplitude')

plt.title('Windowed Waveform with Anomalies Highlighted')

plt.legend()

plt.show()

相关推荐
EasyNVR2 小时前
NVR录像机汇聚管理EasyNVR多品牌NVR管理工具视频汇聚技术在智慧安防监控中的应用与优势
安全·音视频·监控·视频监控
yangshuo12812 小时前
scoop安装ffmpeg转换视频为语音文件
ffmpeg·音视频
hunandede5 小时前
FFmpeg 4.3 音视频-多路H265监控录放C++开发十三.2:avpacket中包含多个 NALU如何解析头部分析
c++·ffmpeg·音视频
声网5 小时前
「人眼视觉不再是视频消费的唯一形式」丨智能编解码和 AI 视频生成专场回顾@RTE2024
人工智能·音视频
Mr.简锋9 小时前
opencv视频读写
人工智能·opencv·音视频
春末的南方城市10 小时前
开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序
人工智能·计算机视觉·aigc·音视频
Hali_Botebie10 小时前
采样率22050,那么CHUNK_SIZE 一次传输的音频数据大小设置多少合适?unity接收后出现卡顿的问题的思路
音视频
风之馨技术录11 小时前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
晚点吧11 小时前
视频横屏转竖屏播放-使用人脸识别+目标跟踪实现
人工智能·目标跟踪·音视频
EasyCVR12 小时前
ISUP协议视频平台EasyCVR视频设备轨迹回放平台智慧农业视频远程监控管理方案
服务器·网络·数据库·音视频