音频干扰检测(时域方法)

请注意注释掉的代码:逐个包络比对就不能加窗了。

import librosa

import numpy as np

from scipy.signal import windows

import matplotlib.pyplot as plt

读取音频文件

audio_file = 'sine.wav'

signal, sample_rate = librosa.load(audio_file, sr=None, mono=False)

检查通道数并处理信号

if signal.ndim > 1:

num_channels = signal.shape[0]

print(f"音频文件有 {num_channels} 个通道")

如果是4通道,取第X个通道进行处理,这里示例取第4个通道(索引为3)

if num_channels == 2:

signal = signal[0, :]

else:

如果信号是单通道,直接使用

print("音频文件是单通道")

计算每个周期的采样点数

cycle_samples = int(sample_rate / 1000)

# 创建汉宁窗

window_length = cycle_samples * 1 # 窗长度为10个周期

window = windows.hann(window_length)

# 对信号的开头和结尾分别应用汉宁窗

windowed_signal = signal.copy()

windowed_signal[:window_length//2] *= window[:window_length//2]

windowed_signal[-window_length//2:] *= window[window_length//2:]

计算周期数

num_cycles = len(signal) // cycle_samples

存储异常周期的时间点和幅值

anomaly_times = []

anomaly_amplitudes = []

逐个周期比较包络

for i in range(num_cycles - 1):

start = i * cycle_samples

end = (i + 1) * cycle_samples

current_cycle = signal[start:end]

next_cycle = signal[end:end+cycle_samples]

计算当前周期和下一个周期的包络差异

diff = np.abs(current_cycle - next_cycle)

如果差异大于阈值,则认为是异常周期

if np.max(diff) > 0.1:

anomaly_time = start / sample_rate

anomaly_times.append(anomaly_time)

anomaly_amplitudes.append(np.max(np.abs(current_cycle)))

打印异常周期的时间点和幅值

for time, amplitude in zip(anomaly_times, anomaly_amplitudes):

print(f"异常周期时间点: {time:.3f}s, 幅值: {amplitude:.3f}")

绘制时域波形图

time = np.arange(len(signal)) / sample_rate

plt.figure(figsize=(8,4))

plt.plot(time, signal, label='Signal')

标注异常周期

for t in anomaly_times:

plt.axvline(x=t, color='r', linestyle='--', label='Anomaly Detected')

plt.xlabel('Time(s)')

plt.ylabel('Amplitude')

plt.title('Windowed Waveform with Anomalies Highlighted')

plt.legend()

plt.show()

相关推荐
kaixin_啊啊2 天前
突破限制:Melody远程音频管理新体验
音视频
ai产品老杨2 天前
解锁仓储智能调度、运输路径优化、数据实时追踪,全功能降本提效的智慧物流开源了
javascript·人工智能·开源·音视频·能源
MThinker2 天前
02-Media-8-uvc_with_csc.py 使用硬件解码的USB摄像头(UVC)捕获视频并显示的程序
音视频·智能硬件·micropython·canmv·k230
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
清风6666662 天前
基于STM32的APP遥控视频水泵小车设计
stm32·单片机·mongodb·毕业设计·音视频·课程设计
Cary丿Xin2 天前
Luma 视频生成 API 对接说明
音视频
奔跑吧 android3 天前
【车载audio开发】【基础概念1】【音频基础概念通俗讲解】
音视频·channel·audio·aosp·frame·period_size
小狮子安度因3 天前
ffplay音频重采样
ffmpeg·音视频
张晓~183399481213 天前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
GilgameshJSS4 天前
【学习K230-例程23】GT6700-音频FFT柱状图
python·学习·音视频