音频干扰检测(时域方法)

请注意注释掉的代码:逐个包络比对就不能加窗了。

import librosa

import numpy as np

from scipy.signal import windows

import matplotlib.pyplot as plt

读取音频文件

audio_file = 'sine.wav'

signal, sample_rate = librosa.load(audio_file, sr=None, mono=False)

检查通道数并处理信号

if signal.ndim > 1:

num_channels = signal.shape[0]

print(f"音频文件有 {num_channels} 个通道")

如果是4通道,取第X个通道进行处理,这里示例取第4个通道(索引为3)

if num_channels == 2:

signal = signal[0, :]

else:

如果信号是单通道,直接使用

print("音频文件是单通道")

计算每个周期的采样点数

cycle_samples = int(sample_rate / 1000)

# 创建汉宁窗

window_length = cycle_samples * 1 # 窗长度为10个周期

window = windows.hann(window_length)

# 对信号的开头和结尾分别应用汉宁窗

windowed_signal = signal.copy()

windowed_signal[:window_length//2] *= window[:window_length//2]

windowed_signal[-window_length//2:] *= window[window_length//2:]

计算周期数

num_cycles = len(signal) // cycle_samples

存储异常周期的时间点和幅值

anomaly_times = []

anomaly_amplitudes = []

逐个周期比较包络

for i in range(num_cycles - 1):

start = i * cycle_samples

end = (i + 1) * cycle_samples

current_cycle = signal[start:end]

next_cycle = signal[end:end+cycle_samples]

计算当前周期和下一个周期的包络差异

diff = np.abs(current_cycle - next_cycle)

如果差异大于阈值,则认为是异常周期

if np.max(diff) > 0.1:

anomaly_time = start / sample_rate

anomaly_times.append(anomaly_time)

anomaly_amplitudes.append(np.max(np.abs(current_cycle)))

打印异常周期的时间点和幅值

for time, amplitude in zip(anomaly_times, anomaly_amplitudes):

print(f"异常周期时间点: {time:.3f}s, 幅值: {amplitude:.3f}")

绘制时域波形图

time = np.arange(len(signal)) / sample_rate

plt.figure(figsize=(8,4))

plt.plot(time, signal, label='Signal')

标注异常周期

for t in anomaly_times:

plt.axvline(x=t, color='r', linestyle='--', label='Anomaly Detected')

plt.xlabel('Time(s)')

plt.ylabel('Amplitude')

plt.title('Windowed Waveform with Anomalies Highlighted')

plt.legend()

plt.show()

相关推荐
开开心心_Every2 分钟前
便捷的电脑自动关机辅助工具
开发语言·人工智能·pdf·c#·电脑·音视频·sublime text
Antonio9153 小时前
【音视频】TS协议介绍
音视频
来自宇宙的曹先生7 小时前
【视频观看系统】- 技术与架构选型
架构·音视频
mulannanlu10 小时前
视频音频转换器V!P版(安卓)安装就解锁V!P!永久免费使用!
音视频·软件·软件下载
一只特立独行的程序猿15 小时前
手机、平板音频软件开发调测常用命令
音视频
来自宇宙的曹先生21 小时前
视频网站弹幕系统简易实现
spring boot·音视频
hjjdebug1 天前
ffplay6 播放器关键技术点分析 1/2
c++·ffmpeg·音视频
_pengliang1 天前
WebRTC 双向视频通话
音视频·webrtc
开开心心_Every1 天前
全能视频处理工具介绍说明
开发语言·人工智能·django·pdf·flask·c#·音视频
沐尘而生1 天前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐