吴恩达2022机器学习专项课程(一) 4.1 梯度下降

问题预览

  1. 梯度下降算法的作用是?
  2. 梯度下降的过程?
  3. 梯度下降和最小化成本函数的联系?
  4. 所有的成本函数都是一个形状吗?
  5. 在非凸形状中,梯度下降的更新过程是?
  6. 在非凸形状中,不同的初值对最小化成本函数的影响是?
  7. 什么是局部最小值?

笔记

1.梯度下降算法的作用

梯度下降算法可以计算大多数函数的最小值。

2.梯度下降的过程

先给w,b设置初始值,一般为0,梯度下降算法不断更新w,b,如果有多个w,则不断更新每个w,直至成本函数接近或达到最小值。

3.梯度下降最小化成本函数

由图可知,梯度下降是在不断计算并更新w,b,而成本函数的值是通过w,b才能计算的。由此可以将梯度下降和最小化成本函数结合观察。

4.不同成本函数的形状

不同的成本函数形状也不同,例如神经网络模型可能用到的某个成本函数,呈现多曲面非凸状。

5.梯度下降的更新过程

梯度下降算法不断更新成本函数的值,每次更新都尽量让成本函数的值下降的最快,直至局部或全局最低点。

6.不同的w,b对梯度下降的影响

在非凸形状中,w,b的初始值不同,梯度下降的起点也不同,最终计算的成本函数最小值也不同。

7.局部最小值

如上图示例,不同的w,b起始位置,会计算出不同的成本函数最小值,两个不同的最小值被称为局部最小值。

总结

梯度下降算法的作用是为了最小化函数。我们需要成本函数的最小值,借此得到最优的w,b,因此我们使用梯度下降算法去最小化成本函数。梯度下降在计算线性回归的成本函数时,不断更新w,b,尽量让成本函数最快达到最小值。线性回归的平方误差成本函数只有一个最小值,而在神经网络模型中使用的某些成本函数可能会在3d空间中呈现出多个局部最小值,这取决于成本函数的具体形状。

相关推荐
IT_陈寒2 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub3 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心3 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
aneasystone本尊6 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒6 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊16 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三17 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯17 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet19 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算20 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源