吴恩达2022机器学习专项课程(一) 4.1 梯度下降

问题预览

  1. 梯度下降算法的作用是?
  2. 梯度下降的过程?
  3. 梯度下降和最小化成本函数的联系?
  4. 所有的成本函数都是一个形状吗?
  5. 在非凸形状中,梯度下降的更新过程是?
  6. 在非凸形状中,不同的初值对最小化成本函数的影响是?
  7. 什么是局部最小值?

笔记

1.梯度下降算法的作用

梯度下降算法可以计算大多数函数的最小值。

2.梯度下降的过程

先给w,b设置初始值,一般为0,梯度下降算法不断更新w,b,如果有多个w,则不断更新每个w,直至成本函数接近或达到最小值。

3.梯度下降最小化成本函数

由图可知,梯度下降是在不断计算并更新w,b,而成本函数的值是通过w,b才能计算的。由此可以将梯度下降和最小化成本函数结合观察。

4.不同成本函数的形状

不同的成本函数形状也不同,例如神经网络模型可能用到的某个成本函数,呈现多曲面非凸状。

5.梯度下降的更新过程

梯度下降算法不断更新成本函数的值,每次更新都尽量让成本函数的值下降的最快,直至局部或全局最低点。

6.不同的w,b对梯度下降的影响

在非凸形状中,w,b的初始值不同,梯度下降的起点也不同,最终计算的成本函数最小值也不同。

7.局部最小值

如上图示例,不同的w,b起始位置,会计算出不同的成本函数最小值,两个不同的最小值被称为局部最小值。

总结

梯度下降算法的作用是为了最小化函数。我们需要成本函数的最小值,借此得到最优的w,b,因此我们使用梯度下降算法去最小化成本函数。梯度下降在计算线性回归的成本函数时,不断更新w,b,尽量让成本函数最快达到最小值。线性回归的平方误差成本函数只有一个最小值,而在神经网络模型中使用的某些成本函数可能会在3d空间中呈现出多个局部最小值,这取决于成本函数的具体形状。

相关推荐
LZL_SQ1 天前
昇腾NPU架构设计 从抽象硬件模型到物理实现
人工智能·昇腾·cann·ascend c
慎独4131 天前
家家有平台:Web3.0绿色积分引领消费新纪元
大数据·人工智能·物联网
火云牌神1 天前
如何选择FAISS的索引类型
人工智能·faiss
Gavin在路上1 天前
SpringAIAlibaba之高级特性与实战场景全解析(5)
人工智能
会挠头但不秃1 天前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
百***24371 天前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
L.fountain1 天前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
摘星编程1 天前
Ascend C编程语言详解:打造高效AI算子的利器
c语言·开发语言·人工智能
DisonTangor1 天前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc