吴恩达2022机器学习专项课程(一) 4.1 梯度下降

问题预览

  1. 梯度下降算法的作用是?
  2. 梯度下降的过程?
  3. 梯度下降和最小化成本函数的联系?
  4. 所有的成本函数都是一个形状吗?
  5. 在非凸形状中,梯度下降的更新过程是?
  6. 在非凸形状中,不同的初值对最小化成本函数的影响是?
  7. 什么是局部最小值?

笔记

1.梯度下降算法的作用

梯度下降算法可以计算大多数函数的最小值。

2.梯度下降的过程

先给w,b设置初始值,一般为0,梯度下降算法不断更新w,b,如果有多个w,则不断更新每个w,直至成本函数接近或达到最小值。

3.梯度下降最小化成本函数

由图可知,梯度下降是在不断计算并更新w,b,而成本函数的值是通过w,b才能计算的。由此可以将梯度下降和最小化成本函数结合观察。

4.不同成本函数的形状

不同的成本函数形状也不同,例如神经网络模型可能用到的某个成本函数,呈现多曲面非凸状。

5.梯度下降的更新过程

梯度下降算法不断更新成本函数的值,每次更新都尽量让成本函数的值下降的最快,直至局部或全局最低点。

6.不同的w,b对梯度下降的影响

在非凸形状中,w,b的初始值不同,梯度下降的起点也不同,最终计算的成本函数最小值也不同。

7.局部最小值

如上图示例,不同的w,b起始位置,会计算出不同的成本函数最小值,两个不同的最小值被称为局部最小值。

总结

梯度下降算法的作用是为了最小化函数。我们需要成本函数的最小值,借此得到最优的w,b,因此我们使用梯度下降算法去最小化成本函数。梯度下降在计算线性回归的成本函数时,不断更新w,b,尽量让成本函数最快达到最小值。线性回归的平方误差成本函数只有一个最小值,而在神经网络模型中使用的某些成本函数可能会在3d空间中呈现出多个局部最小值,这取决于成本函数的具体形状。

相关推荐
TDengine (老段)1 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
数据的世界012 小时前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio
shayudiandian3 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声3 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼3 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest4 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c4 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费4 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`5 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频