【CANN训练营笔记】Atlas 200I DK A2体验手写数字识别模型训练&推理

环境介绍

开发板:Huawei Atals 200I DK A2

内存:4G

NPU:Ascend 310B4

CANN:7.0

准备环境

下载编译好的torch_npu

bash 复制代码
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl
pip3 install torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl

安装PyTorch2.1.0、torchvision0.16.0

bash 复制代码
pip install torch==2.1.0 torchvision==0.16.0

设置环境变量

bash 复制代码
export DDK_PATH=/usr/local/Ascend/ascend-toolkit/latest
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub

安装ACLLite库

安装ffmpeg

Ubuntu

bash 复制代码
apt-get install ffmpeg libavcodec-dev libswscale-dev libavdevice-dev

欧拉系统

bash 复制代码
yum install ffmpeg ffmpeg-devel

将yum安装的opencv头文件软链到系统能默认识别的路径

bash 复制代码
ln -s /usr/include/ffmpeg/* /usr/include/

源码安装方式:

bash 复制代码
wget https://ffmpeg.org/releases/ffmpeg-4.2.9.tar.gz
tar -zxvf ffmpeg-4.2.9.tar.gz
cd ffmpeg-4.2.9
./configure --disable-static --enable-shared --disable-doc --enable-ffplay --enable-ffprobe --enable-avdevice --disable-debug --enable-demuxers --enable-parsers --enable-protocols --enable-small --enable-avresample
make -j8
make install

为保证程序能识别动态库,请在/etc/ld.so.conf.d下添加ffmpeg.conf配置

bash 复制代码
cd /etc/ld.so.conf.d
vim ffmpeg.conf

添加内容

复制代码
/usr/local/lib

生效配置文件:

bash 复制代码
ldconfig

设置ffmpeg安装路径环境变量,请替换为ffmpeg的实际安装路径

复制代码
export FFMPEG_PATH=/usr/local/lib

克隆ACLLite代码仓

bash 复制代码
git clone https://gitee.com/ascend/ACLLite.git
cd ACLLite

安装

bash 复制代码
bash build_so.sh

安装依赖

克隆代码仓

bash 复制代码
git clone https://gitee.com/ascend/EdgeAndRobotics/

进入代码文件夹

bash 复制代码
cd EdgeAndRobotics/Samples/HandWritingTrainAndInfer

安装依赖

bash 复制代码
pip3 install -r requirements.txt

模型训练

设置环境变量减小算子编译内存占用

bash 复制代码
export TE_PARALLEL_COMPILER=1
export MAX_COMPILE_CORE_NUMBER=1

运行训练脚本

bash 复制代码
python main.py

开始运行

NPU使用情况

在线推理

训练生成的mnist.pt转换mnist.onnx模型

bash 复制代码
python3 export.py

获取测试图片

bash 复制代码
cd data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/mnist/8.jpg

测试图片:

执行在线推理

bash 复制代码
cd ../onnxInfer/
python3 infer.py

推理结果

复制代码
[image_path:data/8.jpg] [inferssession_time:1349 pictures/s] [output:8]

离线推理

获取测试图片

bash 复制代码
cd omInfer/data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/mnist/8.jpg

获取PyTorch框架的ResNet50模型(.onnx),并转换为昇腾AI处理器能识别的模型( .om)

为了方便下载,在这里直接给出原始模型下载及模型转换命令,可以直接拷贝执行。

将在线推理时导出的mnist.onnx模型拷贝到model目录下

bash 复制代码
cd ../model
cp ../../mnist.onnx ./

获取AIPP配置文件

bash 复制代码
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/mnist/ecs/aipp.cfg

模型转换

bash 复制代码
atc --model=mnist.onnx --framework=5 --insert_op_conf=aipp.cfg --output=mnist --soc_version=Ascend310B4

编译样例源码

bash 复制代码
cd ../scripts 
bash sample_build.sh

运行样例

bash 复制代码
bash sample_run.sh

运行结果

复制代码
[INFO] value[1.000000] output[8]
相关推荐
一个平凡而乐于分享的小比特14 小时前
UCOSIII笔记(十四)时间戳
笔记·时间戳·ucosiii
YJlio15 小时前
ShareEnum 学习笔记(9.5):内网共享体检——开放共享、匿名访问与权限风险
大数据·笔记·学习
泽虞15 小时前
《STM32单片机开发》p7
笔记·stm32·单片机·嵌入式硬件
FakeOccupational16 小时前
电路笔记(信号):网线能传多少米?网线信号传输距离
开发语言·笔记·php
Yawesh_best1 天前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
Ccjf酷儿1 天前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y1 天前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面1 天前
(笔记)自定义 systemd 服务
笔记
DKPT1 天前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
QT 小鲜肉1 天前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法