备战蓝桥杯---贪心刷题1

话不多说,直接看题:

本质是一个数学题:

我们令xi<0表示反方向传递,易得我们就是求每一个xi的绝对值之和min,我们令平均值为a爸。

易得约束条件:

x1-x2=a1-a,x2-x3=a2-a.....

解得x1=x1-0,x2=x1-((n-1)*a-a2-...an)。。。。

这样就把问题转化成|x1-c1|+|x2-c2|+|...|....

又ci=ci+1+a-ai我们就可以吧c解出来,下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N=1000010;
long long n,a[N];
long long sum=0;
long long c[N];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
         scanf("%lld",&a[i]);
         sum+=a[i];
    }
    long long av=sum/n;
    for(int i=n;i>1;i--){
        c[i]=c[i+1]+av-a[i];
    }
    c[1]=0;
    sort(c+1,c+n+1);
    long long res=0;
    for(int i=1;i<=n;i++) res+=abs(c[i]-c[(i+1)/2]);
    cout<<res;
}

接题:

先转换一下,我们从小岛的角度来看,看看每一个小岛可以被覆盖在x轴上对应的范围,这样问题就转换成了给定若干个区间,最少选多少个点可以使得每一个区间至少选了一个点。

如何贪心?我们先按照右端点排序,扫描每一个线段,若上一个右端点不在区间,那么选右端点。

若在则跳过。

如何严格证明?

我们记cnt为算法得到的结果,opt为最优解。

显然选了cnt个,那么就有cnt个互不相交的区间,因此答案一定大于等于cnt+opt是最优解,得证!

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int n,d;
struct node{
    double l,r;
}seg[N];
bool cmp(node a,node b){
    return a.r<b.r;
}
int main(){
    cin>>n>>d;
    bool ff=0;
    for(int i=0;i<n;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        if(y>d) ff=1;
        else{
            double ck=sqrt(d*d-y*y);
            seg[i].l=x-ck,seg[i].r=x+ck;
        }
    }
    if(ff) cout<<-1<<endl;
    else{
        sort(seg,seg+n,cmp);
        int cnt=0;
        double last=-1000000000;
        for(int i=0;i<n;i++){
            if(last<seg[i].l){
                cnt++;
                last=seg[i].r;
            }
        }
        cout<<cnt;
    }
}

接题:

很容易想到,假如每一个人的钱都比平均大,那么都取平均即可。

假如有一个人少,那么让它填满,剩下的平均分摊给大于平均的。

下面是严格的证明:

我们把方差的每一项看成xi,xi的和为0,由均值不等式知我们要让每一个数尽可能相同,假如有一个小于平均值,假设它不选满,则结果肯定变大。

因此,若a1<平均值,那么我们就取a1,后面的式子满足加起来和为s-a1,因此剩下的加起来就是s-a1-(n-1)/n*s;此时每一个取到(s-a1)/(n-1)是最优的,而若此时大于该值,那么后面的肯定也大(排过序),因此取其即可。

下面是AC代码:

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
const int N=500100;
int n,a[N];
int main(){
    long double s;
    scanf("%d%Lf",&n,&s);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    sort(a,a+n);
    long double res=0,av=s/n;
    for(int i=0;i<n;i++){
        double cur=s/(n-i);
        if(a[i]<cur) cur=a[i];
        res+=(cur-av)*(cur-av);
        s-=cur;
    }
    printf("%.4Lf\n",sqrt(res/n));
}
相关推荐
青山是哪个青山26 分钟前
递归,回溯,DFS,Floodfill,记忆化搜索
算法·深度优先
一块plus27 分钟前
参与、拥有、共创:Web3 游戏开启玩家共建时代
算法·程序员·架构
倔强的石头_1 小时前
【数据结构与算法】插入排序:原理、实现与分析
算法
倔强的石头_1 小时前
【数据结构与算法】希尔排序:基于插入排序的高效排序算法
后端·算法
Shaun_青璇1 小时前
CPP基础(2)
开发语言·c++·算法
红糖生姜2 小时前
字符串|数组|计算常见函数整理-竞赛专用(从比赛真题中总结的,持续更新中)
c++·算法
焜昱错眩..3 小时前
代码随想录训练营二十六天| 654.最大二叉树 617.合并二叉树 700.二叉搜索树的搜索 98.验证二叉搜索树
数据结构·算法
jndingxin3 小时前
OpenCV CUDA模块中用于稠密光流计算的 TV-L1(Dual TV-L1)算法类cv::cuda::OpticalFlowDual_TVL1
人工智能·opencv·算法
geneculture3 小时前
路径=算法=操作:复杂系统行为的统一数学框架
人工智能·算法·数学建模·课程设计·智慧系统·融智学的重要应用·复杂系统
AcrelGHP3 小时前
建筑末端配电回路安全用电解决方案:筑牢电气防火最后一道防线
人工智能·算法·安全