联邦学习是怎么实现的(例子)

学习目标:

  • 更加了解联邦学习

学习内容:

联邦学习的实现涉及多个设备或节点协同训练一个共享的机器学习模型,同时保持各自数据的隐私。

例子

在医疗领域中,不同医疗机构拥有各自的患者数据,但由于隐私保护法规,这些数据不能直接共享。联邦学习允许这些机构合作创建一个更准确的预测模型,而无需交换敏感数据。

例如,假设有两家医院,它们希望共同开发一个预测糖尿病并发症的模型。每家医院都有一部分病人的数据,但由于隐私保护,他们不能直接交换这些数据。通过联邦学习,每家医院可以在本地训练模型,并只共享模型参数的更新,而不是患者的实际数据。这样,两家医院可以合作提高模型的准确性,同时保护患者的隐私。

下面我来说一下具体步骤

  1. 本地模型训练:每家医院使用其自己的数据在本地训练一个模型。
  2. 模型更新共享:医院之间共享模型的更新,而不是原始数据。
  3. 中央聚合:一个中央服务器或中央机构负责聚合来自所有医院的模型更新。
  4. 全局模型更新:聚合后的全局模型被发送回各个医院,用于更新各自的本地模型。
  5. 迭代优化:重复上述过程,直到达到所需的模型性能。

这种方法不仅保护了患者的隐私,还允许医院利用更广泛的数据集来提高模型的性能。


相关推荐
Java程序之猿29 分钟前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰1 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn3 小时前
Hadoop yarn安装
大数据·hadoop·分布式
NiNg_1_2344 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
隔着天花板看星星5 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
技术路上的苦行僧10 小时前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水10 小时前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
小小工匠10 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc
闯闯的日常分享13 小时前
分布式锁的原理分析
分布式
太阳伞下的阿呆13 小时前
kafka常用命令(持续更新)
分布式·kafka