联邦学习是怎么实现的(例子)

学习目标:

  • 更加了解联邦学习

学习内容:

联邦学习的实现涉及多个设备或节点协同训练一个共享的机器学习模型,同时保持各自数据的隐私。

例子

在医疗领域中,不同医疗机构拥有各自的患者数据,但由于隐私保护法规,这些数据不能直接共享。联邦学习允许这些机构合作创建一个更准确的预测模型,而无需交换敏感数据。

例如,假设有两家医院,它们希望共同开发一个预测糖尿病并发症的模型。每家医院都有一部分病人的数据,但由于隐私保护,他们不能直接交换这些数据。通过联邦学习,每家医院可以在本地训练模型,并只共享模型参数的更新,而不是患者的实际数据。这样,两家医院可以合作提高模型的准确性,同时保护患者的隐私。

下面我来说一下具体步骤

  1. 本地模型训练:每家医院使用其自己的数据在本地训练一个模型。
  2. 模型更新共享:医院之间共享模型的更新,而不是原始数据。
  3. 中央聚合:一个中央服务器或中央机构负责聚合来自所有医院的模型更新。
  4. 全局模型更新:聚合后的全局模型被发送回各个医院,用于更新各自的本地模型。
  5. 迭代优化:重复上述过程,直到达到所需的模型性能。

这种方法不仅保护了患者的隐私,还允许医院利用更广泛的数据集来提高模型的性能。


相关推荐
IvanCodes7 小时前
五、Hadoop集群部署:从零搭建三节点Hadoop环境(保姆级教程)
大数据·hadoop·分布式
Panesle10 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
计算机毕设定制辅导-无忧学长11 小时前
RabbitMQ 核心概念与消息模型深度解析(一)
分布式·rabbitmq
信徒_14 小时前
Kafka topic 中的 partition 数据倾斜问题
分布式·kafka
Paraverse_徐志斌14 小时前
Kafka 如何保证消息顺序性
分布式·中间件·kafka·消息队列
我叫珂蛋儿吖15 小时前
[redis进阶六]详解redis作为缓存&&分布式锁
运维·c语言·数据库·c++·redis·分布式·缓存
椰椰椰耶17 小时前
【RabbitMQ】工作队列和发布/订阅模式的具体实现
分布式·rabbitmq·ruby
猪猪果泡酒17 小时前
Spark,RDD中的行动算子
大数据·分布式·spark
2401_8712905818 小时前
Spark处理过程-转换算子
大数据·分布式·spark
Betty_蹄蹄boo18 小时前
运行Spark程序-在Spark-shell——RDD
大数据·分布式·spark