Python使用pandas库,其中的DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构

Python的pandas库是一个非常强大的数据处理工具,其中的DataFrame对象更是其核心组件。DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构。你可以把它想象成一个Excel表格,有行有列,可以存储各种类型的数据。

下面是一些常见的pandas DataFrame对象处理操作:

  1. 创建DataFrame

python

复制

import pandas as pd

使用字典创建DataFrame

data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}

df = pd.DataFrame(data)

打印DataFrame

print(df)

  1. 查看DataFrame的基本信息

python

复制

查看前几行数据

print(df.head())

查看后几行数据

print(df.tail())

查看数据的基本信息,包括每列的非空值数量、类型等

print(df.info())

查看数据的摘要统计

print(df.describe())

  1. 选择数据

python

复制

选择单列

print(df['Name'])

选择多列

print(df[['Name', 'Age']])

使用iloc根据整数位置选择行和列

print(df.iloc[0:2, 0:1]) # 选择前两行,第一列

使用loc根据标签选择行和列

print(df.loc[0:2, 'Name']) # 选择前两行,'Name'列

  1. 数据清洗

python

复制

删除含有缺失值的行

df_dropna = df.dropna()

填充缺失值

df_fillna = df.fillna(method='ffill') # 前向填充

  1. 数据排序

python

复制

按照某列进行排序

df_sorted = df.sort_values(by='Age')

  1. 数据分组和聚合

python

复制

按照某列进行分组,并对另一列进行聚合操作(如求和)

df_grouped = df.groupby('Name')['Age'].sum()

  1. 数据合并

python

复制

创建另一个DataFrame

df2 = pd.DataFrame({'Name': ['Tom', 'Jerry'], 'Score': [90, 85]})

按照'Name'列进行合并

df_merged = pd.merge(df, df2, on='Name')

这些只是pandas DataFrame对象处理的一些基本操作,pandas库的功能远不止于此。如果你需要处理更复杂的数据,建议查阅pandas的官方文档或相关教程。

相关推荐
SaleCoder40 分钟前
用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
开发语言·python·机器学习·python股票预测·lstm股票模型·机器学习股票趋势
技术猿188702783517 小时前
实现“micro 关键字搜索全覆盖商品”并通过 API 接口提供实时数据(一个方法)
开发语言·网络·python·深度学习·测试工具
烛阴7 小时前
为什么你的Python项目总是混乱?层级包构建全解析
前端·python
三金C_C7 小时前
asyncio 与 uvloop
python·异步·asyncio
放飞自我的Coder7 小时前
【colab 使用uv创建一个新的python版本运行】
开发语言·python·uv
黎茗Dawn8 小时前
连接new服务器注意事项
linux·python
LJianK18 小时前
Java和JavaScript的&&和||
java·javascript·python
天天爱吃肉821810 小时前
效率提升新范式:基于数字孪生的汽车标定技术革命
python·嵌入式硬件·汽车
lemon_sjdk11 小时前
Java飞机大战小游戏(升级版)
java·前端·python
格鸰爱童话11 小时前
python+selenium UI自动化初探
python·selenium·自动化