Python使用pandas库,其中的DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构

Python的pandas库是一个非常强大的数据处理工具,其中的DataFrame对象更是其核心组件。DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构。你可以把它想象成一个Excel表格,有行有列,可以存储各种类型的数据。

下面是一些常见的pandas DataFrame对象处理操作:

  1. 创建DataFrame

python

复制

import pandas as pd

使用字典创建DataFrame

data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}

df = pd.DataFrame(data)

打印DataFrame

print(df)

  1. 查看DataFrame的基本信息

python

复制

查看前几行数据

print(df.head())

查看后几行数据

print(df.tail())

查看数据的基本信息,包括每列的非空值数量、类型等

print(df.info())

查看数据的摘要统计

print(df.describe())

  1. 选择数据

python

复制

选择单列

print(df['Name'])

选择多列

print(df[['Name', 'Age']])

使用iloc根据整数位置选择行和列

print(df.iloc[0:2, 0:1]) # 选择前两行,第一列

使用loc根据标签选择行和列

print(df.loc[0:2, 'Name']) # 选择前两行,'Name'列

  1. 数据清洗

python

复制

删除含有缺失值的行

df_dropna = df.dropna()

填充缺失值

df_fillna = df.fillna(method='ffill') # 前向填充

  1. 数据排序

python

复制

按照某列进行排序

df_sorted = df.sort_values(by='Age')

  1. 数据分组和聚合

python

复制

按照某列进行分组,并对另一列进行聚合操作(如求和)

df_grouped = df.groupby('Name')['Age'].sum()

  1. 数据合并

python

复制

创建另一个DataFrame

df2 = pd.DataFrame({'Name': ['Tom', 'Jerry'], 'Score': [90, 85]})

按照'Name'列进行合并

df_merged = pd.merge(df, df2, on='Name')

这些只是pandas DataFrame对象处理的一些基本操作,pandas库的功能远不止于此。如果你需要处理更复杂的数据,建议查阅pandas的官方文档或相关教程。

相关推荐
Yeats_Liao4 分钟前
显存瓶颈分析:大模型推理过程中的内存管理机制
python·深度学习·神经网络·架构·开源
齐鲁大虾7 分钟前
如何通过Java调取打印机打印图片和文本
java·开发语言·python
carver w8 分钟前
张氏相机标定,不求甚解使用篇
c++·python·数码相机
No0d1es9 分钟前
2025年第十六届蓝桥杯青少组省赛 Python编程 初/中级组真题
python·蓝桥杯·第十六届·省事
蜜汁小强30 分钟前
macOS 上升级到 python 3.12
开发语言·python·macos
Ulyanov1 小时前
PyVista与Tkinter桌面级3D可视化应用实战
开发语言·前端·python·3d·信息可视化·tkinter·gui开发
子午1 小时前
【2026原创】文本情感识别系统~Python+深度学习+textCNN算法+舆情文本+模型训练
python·深度学习·算法
SunnyRivers1 小时前
uv 与 pip:Python 包与依赖管理工具对比
python·pip·uv
计算机网恋1 小时前
PyCharm左侧的提交按钮不显示的解决办法
ide·python·pycharm
2501_941333101 小时前
【Centernet改进版】基于ResNet50的纱布检测系统实现详解
python