Python使用pandas库,其中的DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构

Python的pandas库是一个非常强大的数据处理工具,其中的DataFrame对象更是其核心组件。DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构。你可以把它想象成一个Excel表格,有行有列,可以存储各种类型的数据。

下面是一些常见的pandas DataFrame对象处理操作:

  1. 创建DataFrame

python

复制

import pandas as pd

使用字典创建DataFrame

data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}

df = pd.DataFrame(data)

打印DataFrame

print(df)

  1. 查看DataFrame的基本信息

python

复制

查看前几行数据

print(df.head())

查看后几行数据

print(df.tail())

查看数据的基本信息,包括每列的非空值数量、类型等

print(df.info())

查看数据的摘要统计

print(df.describe())

  1. 选择数据

python

复制

选择单列

print(df['Name'])

选择多列

print(df[['Name', 'Age']])

使用iloc根据整数位置选择行和列

print(df.iloc[0:2, 0:1]) # 选择前两行,第一列

使用loc根据标签选择行和列

print(df.loc[0:2, 'Name']) # 选择前两行,'Name'列

  1. 数据清洗

python

复制

删除含有缺失值的行

df_dropna = df.dropna()

填充缺失值

df_fillna = df.fillna(method='ffill') # 前向填充

  1. 数据排序

python

复制

按照某列进行排序

df_sorted = df.sort_values(by='Age')

  1. 数据分组和聚合

python

复制

按照某列进行分组,并对另一列进行聚合操作(如求和)

df_grouped = df.groupby('Name')['Age'].sum()

  1. 数据合并

python

复制

创建另一个DataFrame

df2 = pd.DataFrame({'Name': ['Tom', 'Jerry'], 'Score': [90, 85]})

按照'Name'列进行合并

df_merged = pd.merge(df, df2, on='Name')

这些只是pandas DataFrame对象处理的一些基本操作,pandas库的功能远不止于此。如果你需要处理更复杂的数据,建议查阅pandas的官方文档或相关教程。

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1683 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞4 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx5 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模5 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
小鸡吃米…7 小时前
机器学习中的代价函数
人工智能·python·机器学习
Li emily8 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
m0_561359678 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov8 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
2401_838472519 小时前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python