Python使用pandas库,其中的DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构

Python的pandas库是一个非常强大的数据处理工具,其中的DataFrame对象更是其核心组件。DataFrame可以看作是一个二维的、大小可变的、有潜在异构类型列的表格型数据结构。你可以把它想象成一个Excel表格,有行有列,可以存储各种类型的数据。

下面是一些常见的pandas DataFrame对象处理操作:

  1. 创建DataFrame

python

复制

import pandas as pd

使用字典创建DataFrame

data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}

df = pd.DataFrame(data)

打印DataFrame

print(df)

  1. 查看DataFrame的基本信息

python

复制

查看前几行数据

print(df.head())

查看后几行数据

print(df.tail())

查看数据的基本信息,包括每列的非空值数量、类型等

print(df.info())

查看数据的摘要统计

print(df.describe())

  1. 选择数据

python

复制

选择单列

print(df['Name'])

选择多列

print(df[['Name', 'Age']])

使用iloc根据整数位置选择行和列

print(df.iloc[0:2, 0:1]) # 选择前两行,第一列

使用loc根据标签选择行和列

print(df.loc[0:2, 'Name']) # 选择前两行,'Name'列

  1. 数据清洗

python

复制

删除含有缺失值的行

df_dropna = df.dropna()

填充缺失值

df_fillna = df.fillna(method='ffill') # 前向填充

  1. 数据排序

python

复制

按照某列进行排序

df_sorted = df.sort_values(by='Age')

  1. 数据分组和聚合

python

复制

按照某列进行分组,并对另一列进行聚合操作(如求和)

df_grouped = df.groupby('Name')['Age'].sum()

  1. 数据合并

python

复制

创建另一个DataFrame

df2 = pd.DataFrame({'Name': ['Tom', 'Jerry'], 'Score': [90, 85]})

按照'Name'列进行合并

df_merged = pd.merge(df, df2, on='Name')

这些只是pandas DataFrame对象处理的一些基本操作,pandas库的功能远不止于此。如果你需要处理更复杂的数据,建议查阅pandas的官方文档或相关教程。

相关推荐
咖啡の猫几秒前
Python列表推导式
开发语言·python
2501_921649491 分钟前
外汇与贵金属行情 API 集成指南:WebSocket 与 REST 调用实践
网络·后端·python·websocket·网络协议·金融
落雪snowflake2 分钟前
compute_entropy函数
pytorch·python·深度学习
shenzhenNBA7 分钟前
python用openpyxl操作excel-读取或创建excel文件
python·excel·读取excel·创建excel文件
小霖家的混江龙8 分钟前
大模型如何分辨 “狼” 和 “狗” —— 词向量的训练过程
人工智能·python·llm
大猫子的技术日记10 分钟前
【工具篇】极简入门 UV Python项目管理工具
开发语言·python·uv
程序媛徐师姐12 分钟前
Python基于Flask的mooc课程情感分类系统【附源码、文档说明】
python·flask·python慕课课程情感分类·mooc课程情感分类系统·慕课课程情感分类系统·python课程情感分类系统·python课程情感分类
shenzhenNBA15 分钟前
python用openpyxl操作excel-单元格操作
python·excel·单元格操作
ekprada16 分钟前
Day 39 - 图像数据与显存
人工智能·python
森焱森19 分钟前
当八字命理遇上软件开发:一张“流派架构图”+ 实战爬虫指南
驱动开发·爬虫·python·flask·pygame