LangChain Demo | 如何调用stackoverflow并结合ReAct回答代码相关问题

背景

楼主决定提升与LLM交互的质量,之前是直接prompt->answer的范式,现在我希望能用上ReAct策略和能够检索StackOverflow,让同一款LLM发挥出更大的作用。

难点

  1. 怎样调用StackOverflow

step1 pip install stackspi

step 2

python 复制代码
from langchain.agents import load_tools

tools = load_tools(
    ["stackexchange"],
    llm=llm
)

注:stackoverflow是stackexchange的子网站

  1. 交互次数太多token输入超出了llm限制

approach 1 使用ConversationSummaryBufferMemory

这种记忆方式会把之前的对话内容总结一下,限制在设定的token个数内

python 复制代码
from langchain.memory import ConversationSummaryBufferMemory

memory = ConversationSummaryBufferMemory(
    llm = llm, # 这里的llm的作用是总结
    max_token_limit=4097,
    memory_key="chat_history"
)

approach 2 设置参数max_iterations

python 复制代码
agent = ZeroShotAgent(
    llm_chain=llm_chain, 
    tools=tools, 
    max_iterations=4, # 限制最大交互次数,防止token超过上限
    verbose=True
)
  1. llm总是回复无法回答

很多教程把温度设置成0,说是为了得到最准确的答案,但是我发现这样设置,agent会变得特别谨慎,直接说它不知道,温度调高以后问题解决了。

测试问题

What parts does a JUnit4 unit test case consist of?

代码

python 复制代码
from constants import PROXY_URL,KEY

import warnings
warnings.filterwarnings("ignore")

import langchain
langchain.debug = True

from langchain.agents import load_tools
from langchain.chat_models import ChatOpenAI

from langchain.agents import AgentExecutor, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryBufferMemory

llm = ChatOpenAI(
    temperature=0.7, # 如果参数调得很低,会导致LLM特别谨慎,最后不给答案
    model_name="gpt-3.5-turbo-0613", 
    openai_api_key=KEY,
    openai_api_base=PROXY_URL
)

memory = ConversationSummaryBufferMemory(
    llm = llm, # 这里的llm的作用是总结
    max_token_limit=4097,
    memory_key="chat_history"
)

prefix = """You should be a proficient and helpful assistant in java unit testing with JUnit4 framework. You have access to the following tools:"""
suffix = """Begin!"

{chat_history}
Question: {input}
{agent_scratchpad}"""

tools = load_tools(
    ["stackexchange"],
    llm=llm
)

prompt = ZeroShotAgent.create_prompt(
    tools,
    prefix=prefix,
    suffix=suffix,
    input_variables=["input", "chat_history", "agent_scratchpad"],
) # 这里集成了ReAct

llm_chain = LLMChain(llm=llm, prompt=prompt)

agent = ZeroShotAgent(
    llm_chain=llm_chain, 
    tools=tools, 
    max_iterations=4, # 限制最大交互次数,防止token超过上限
    verbose=True
)

agent_chain = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tools, 
    verbose=True, 
    memory=memory
)

def ask_agent(question):
    answer = agent_chain.run(input=question)
    return answer

def main():
    test_question = "What parts does a JUnit4 unit test case consist of?"
    test_answer = ask_agent(test_question)
    return test_answer

if __name__ == "__main__":
    main()

最后输出

chain/end\] \[1:chain:AgentExecutor\] \[75.12s\] Exiting Chain run with output: { "output": "A JUnit4 unit test case consists of the following parts:\\n1. Test class: This is a class that contains the test methods.\\n2. Test methods: These are the methods that contain the actual test code. They are annotated with the @Test annotation.\\n3. Assertions: These are used to verify the expected behavior of the code being tested. JUnit provides various assertion methods for this purpose.\\n4. Annotations: JUnit provides several annotations that can be used to configure the test case, such as @Before, @After, @BeforeClass, and @AfterClass.\\n\\nOverall, a JUnit4 unit test case is a class that contains test methods with assertions, and can be configured using annotations."

相关推荐
YUELEI1185 小时前
langchain 缓存 Caching
缓存·langchain
知其然亦知其所以然1 天前
三分钟接入!SpringAI 玩转 Perplexity 聊天模型实战
后端·spring·langchain
用户9125188677671 天前
LangChain集成Qwen大模型多种方式分享与最佳实践
langchain
玲小珑1 天前
LangChain.js 完全开发手册(六)Vector 向量化技术与语义搜索
前端·langchain·ai编程
无难事者若执2 天前
20250906-01:开始创建LangChain的第一个项目
langchain
年年测试2 天前
在LangChain中无缝接入MCP服务器扩展AI智能体能力
服务器·人工智能·langchain
信马堂2 天前
MCP Token超限问题解决方案
人工智能·langchain
freephp3 天前
企业级LLM已经到了next level:LangChain + DeepSeek = 王炸
langchain·deepseek
小陈phd3 天前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
YUELEI1183 天前
langchain 提示模版 PromptTemplate
python·langchain