浙江省大数据Hudi配置

Hudi部署

完成解压安装及配置后使用maven对hudi进行构建(spark3.1,scala-2.12),使用spark-shell操作hudi(启动时若需要hudi-spark3.1-bundle_2.12-0.12.0.jar,该包已放置在/opt/software下,若不需要请忽略),将spark-shell启动命令复制并粘贴至对应报告中;使用spark-shell运行下面给到的案例,并将最终查询结果截图粘贴至对应报告中。

Scala 复制代码
 import org.apache.hudi.QuickstartUtils._
 import scala.collection.JavaConversions._
 import org.apache.spark.sql.SaveMode.
 import org.apache.hudi.DataSourceReadOptions._
 import org.apache.hudi.DataSourceWriteOptions._
 import org.apache.hudi.config.HoodieWriteConfig._
 import org.apache.hudi.common.model.HoodieRecord
 ​
 val tableName = "hudi_trips_cow"
 val basePath = "file:///tmp/hudi_trips_cow"
 val dataGen = new DataGenerator
 ​
 val inserts = convertToStringList(dataGen.generateInserts(10))
 val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
 df.write.format("hudi").
   options(getQuickstartWriteConfigs).
   option(PRECOMBINE_FIELD_OPT_KEY, "ts").
   option(RECORDKEY_FIELD_OPT_KEY, "uuid").
   option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
   option(TABLE_NAME, tableName).
   mode(Overwrite).
   save(basePath)
 ​
 val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
 tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
 spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()

操作步骤:

1 将编译完成与spark集成的jar包,集成后使用spark-shell操作hudi,启动spark-shell。

bash 复制代码
 spark-shell \
   --jars /opt/software/hudi-spark3.1-bundle_2.12-0.12.0.jar \
   --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
   --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

2 在spark-shell使用:paste编译多条语句按下ctrl+D执行多行语句

复制代码
 :paste
Scala 复制代码
 // 导入依赖包
 import org.apache.hudi.QuickstartUtils._
 import scala.collection.JavaConversions._
 import org.apache.spark.sql.SaveMode._
 import org.apache.hudi.DataSourceReadOptions._
 import org.apache.hudi.DataSourceWriteOptions._
 import org.apache.hudi.config.HoodieWriteConfig._
 import org.apache.hudi.common.model.HoodieRecord
 ​
 // 定义Hudi映射到的文件目录,以及存储表的名称
 val tableName = "hudi_trips_cow"
 val basePath = "file:///tmp/hudi_trips_cow"
 ​
 // 创建数据生成器实例
 val dataGen = new DataGenerator
 ​
 // 使用Hudi的数据生成器生成10条JSON数据
 val inserts = convertToStringList(dataGen.generateInserts(10))
复制代码
 ctrl+D           //执行多行语句

3 将10条JSON数据加载到DataFrame中,并写入hudi,实现一个简单的ETL处理

复制代码
 :paste
Scala 复制代码
 // 读取json数据到DataFrame中
 val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
 ​
 // 将DataFrame写入数据湖
 df.write.format("hudi").
   options(getQuickstartWriteConfigs).
   option(PRECOMBINE_FIELD_OPT_KEY, "ts").
   option(RECORDKEY_FIELD_OPT_KEY, "uuid").
   option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
   option(TABLE_NAME, tableName).
   mode(Overwrite).
   save(basePath)
复制代码
 ctrl+D           //执行多行语句

4 将10条JSON数据加载到DataFrame中,并写入hudi,实现一个简单的ETL处理

复制代码
 :paste
Scala 复制代码
 // 从数据湖中读取数据到DataFrame中
 val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
 ​
 // 注册临时表
 tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
 ​
 // 执行SQL查询,并显示
 spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()
复制代码
 ctrl+D           //执行多行语句
相关推荐
花菜回锅肉3 小时前
hadoop分布式文件系统常用命令
大数据·hadoop·分布式
Yz98765 小时前
Hive基础
大数据·linux·数据仓库·hive·hadoop·bigdata
AORO_BEIDOU6 小时前
抢抓5G机遇,AORO A23防爆手机如何直击园区巡检挑战?
大数据·5g·智能手机·信息与通信
Shaidou_Data6 小时前
信息技术引领未来:大数据治理的实践与挑战
大数据·人工智能·数据清洗·信息技术·数据治理技术
Elastic 中国社区官方博客6 小时前
开始使用 Elastic AI Assistant 进行可观察性和 Microsoft Azure OpenAI
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
青云交6 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:新技术融合的无限可能(下)(12/30)
大数据·性能优化·impala·技术创新·新技术融合·电商案例·跨行业应用
weixin_442643426 小时前
FileLink跨网文件安全摆渡系统——企业数据流转的安全桥梁
大数据·网络·安全·filelink文件摆渡系统
OBOO鸥柏7 小时前
OBOO鸥柏“触摸屏广告一体机交互”亮相2024中国珠海航展
大数据·人工智能·科技·交互
我是琦琦琦琦8 小时前
flink 同步oracle11g数据表到pg库
大数据·postgresql·oracle·flink
myheartgo-on9 小时前
PySpark——Python与大数据
大数据·python·信息可视化