浙江省大数据Hudi配置

Hudi部署

完成解压安装及配置后使用maven对hudi进行构建(spark3.1,scala-2.12),使用spark-shell操作hudi(启动时若需要hudi-spark3.1-bundle_2.12-0.12.0.jar,该包已放置在/opt/software下,若不需要请忽略),将spark-shell启动命令复制并粘贴至对应报告中;使用spark-shell运行下面给到的案例,并将最终查询结果截图粘贴至对应报告中。

Scala 复制代码
 import org.apache.hudi.QuickstartUtils._
 import scala.collection.JavaConversions._
 import org.apache.spark.sql.SaveMode.
 import org.apache.hudi.DataSourceReadOptions._
 import org.apache.hudi.DataSourceWriteOptions._
 import org.apache.hudi.config.HoodieWriteConfig._
 import org.apache.hudi.common.model.HoodieRecord
 ​
 val tableName = "hudi_trips_cow"
 val basePath = "file:///tmp/hudi_trips_cow"
 val dataGen = new DataGenerator
 ​
 val inserts = convertToStringList(dataGen.generateInserts(10))
 val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
 df.write.format("hudi").
   options(getQuickstartWriteConfigs).
   option(PRECOMBINE_FIELD_OPT_KEY, "ts").
   option(RECORDKEY_FIELD_OPT_KEY, "uuid").
   option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
   option(TABLE_NAME, tableName).
   mode(Overwrite).
   save(basePath)
 ​
 val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
 tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
 spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()

操作步骤:

1 将编译完成与spark集成的jar包,集成后使用spark-shell操作hudi,启动spark-shell。

bash 复制代码
 spark-shell \
   --jars /opt/software/hudi-spark3.1-bundle_2.12-0.12.0.jar \
   --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
   --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

2 在spark-shell使用:paste编译多条语句按下ctrl+D执行多行语句

复制代码
 :paste
Scala 复制代码
 // 导入依赖包
 import org.apache.hudi.QuickstartUtils._
 import scala.collection.JavaConversions._
 import org.apache.spark.sql.SaveMode._
 import org.apache.hudi.DataSourceReadOptions._
 import org.apache.hudi.DataSourceWriteOptions._
 import org.apache.hudi.config.HoodieWriteConfig._
 import org.apache.hudi.common.model.HoodieRecord
 ​
 // 定义Hudi映射到的文件目录,以及存储表的名称
 val tableName = "hudi_trips_cow"
 val basePath = "file:///tmp/hudi_trips_cow"
 ​
 // 创建数据生成器实例
 val dataGen = new DataGenerator
 ​
 // 使用Hudi的数据生成器生成10条JSON数据
 val inserts = convertToStringList(dataGen.generateInserts(10))
复制代码
 ctrl+D           //执行多行语句

3 将10条JSON数据加载到DataFrame中,并写入hudi,实现一个简单的ETL处理

复制代码
 :paste
Scala 复制代码
 // 读取json数据到DataFrame中
 val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
 ​
 // 将DataFrame写入数据湖
 df.write.format("hudi").
   options(getQuickstartWriteConfigs).
   option(PRECOMBINE_FIELD_OPT_KEY, "ts").
   option(RECORDKEY_FIELD_OPT_KEY, "uuid").
   option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
   option(TABLE_NAME, tableName).
   mode(Overwrite).
   save(basePath)
复制代码
 ctrl+D           //执行多行语句

4 将10条JSON数据加载到DataFrame中,并写入hudi,实现一个简单的ETL处理

复制代码
 :paste
Scala 复制代码
 // 从数据湖中读取数据到DataFrame中
 val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
 ​
 // 注册临时表
 tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
 ​
 // 执行SQL查询,并显示
 spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()
复制代码
 ctrl+D           //执行多行语句
相关推荐
永洪科技3 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_307779133 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控6 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY7 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj8 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商8 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
Aurora_NeAr9 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1239 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师9 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空10 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase