<math xmlns="http://www.w3.org/1998/Math/MathML"> s w i s h ( x ) = x ∗ δ ( x ) swish(x) = x * \delta(x) </math>swish(x)=x∗δ(x)
h-swish激活函数
<math xmlns="http://www.w3.org/1998/Math/MathML"> h s w i s h ( x ) = x ∗ R e L U 6 ( x + 3 ) 6 hswish(x) = x* \frac {ReLU6(x+3)} {6} </math>hswish(x)=x∗6ReLU6(x+3)
图像
3.2 SE modules at appropriate positions|合适位置放置SE模块
1\] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. **Imagenet classification with deep convolutional neural networks** . In *Advances in neural information processing systems*, pages 1097--1105, 2012. 1
3\] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. **Faster r-cnn: Towards real-time object detection with region proposal networks** . In *Advances in neural information processing systems*, pages 91--99, 2015. 1
5\] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang. **Multi-task correlation particle filter for robust object tracking** . In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4335--4343, 2017. 1
7\] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. **Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs** . *IEEE transactions on pattern analysis and machine intelligence*, 40(4):834--848, 2017. 1
9\] Ali Borji, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and Jia Li. **Salient object detection: A survey** . *Computational visual media*, pages 1--34, 2019. 1
11\] Barret Zoph and Quoc V Le. **Neural architecture search with reinforcement learning** . *arXiv preprint arXiv:1611.01578*, \\2016. 2
13\] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. **Going deeper with convolutions** . In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1--9, 2015. 2
15\] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. **Mobilenetv2: Inverted residuals and linear bottlenecks** . In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4510--4520, 2018. 2, 4
17\] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. **Shufflenet v2: Practical guidelines for efficient cnn architecture design** . In *Proceedings of the European conference on computer vision (ECCV)*, pages 116--131, 2018. 2, 4
19\] Mingxing Tan and Quoc V Le. **Efficientnet: Rethinking model scaling for convolutional neural networks** . *arXiv preprint arXiv:1905.11946*, 2019. 2, 3
21\] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. **Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search** . In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 10734--10742, 2019. 2
23\] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. **Once-for-all: Train one network and specialize it for efficient deployment** . *arXiv preprint arXiv:1908.09791*, \\2019. 2
25\] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. **Deep residual learning for image recognition** . In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770--778, 2016. 2
27\] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. **Imagenet: A large-scale hierarchical image database.** In *2009 IEEE conference on computer vision and pattern recognition*, pages 248--255. Ieee, 2009. 3, 4
29\] PaddlePaddle Authors. P**addledetection, object detection and instance segmentation toolkit based on paddlepaddle** . [github.com/PaddlePaddl...](https://link.juejin.cn?target=https%3A%2F%2Fgithub.com%2FPaddlePaddle%2FPaddleDetection "https://github.com/PaddlePaddle/PaddleDetection"), 2019. 4
31\] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. **The cityscapes dataset for semantic urban scene understanding** . In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3213--3223, 2016. 5
任务:分类图片中是否有人还是无人,先git clone paddleclas项目,然后进入项目;
环境安装
安装paddlepaddle
shell复制代码
# CPU only
python3 -m pip install paddlepaddle==2.5.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
# CUDA 10.2
python3 -m pip install paddlepaddle-gpu==2.5.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
# CUDA 11.2
python3 -m pip install paddlepaddle-gpu==2.5.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA 11.6
python3 -m pip install paddlepaddle-gpu==2.5.2.post116 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA 11.7
python3 -m pip install paddlepaddle-gpu==2.5.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA 12.0
python3 -m pip install paddlepaddle-gpu==2.5.2.post120 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html