蓝桥杯每日一题:最大公约数(欧拉函数)

给定两个正整数 a,m,其中 a<m。

请你计算,有多少个小于 m 的非负整数 x 满足:

gcd(a,m)=gcd(a+x,m)

输入格式

第一行包含整数 T,表示共有 T 组测试数据。

每组数据占一行,包含两个整数 a,m。

输出格式

每组数据输出一行结果,一个整数,表示满足条件的非负整数 x 的个数。

数据范围

前三个测试点满足,1≤T≤10。

所有测试点满足,1≤T≤50,1≤a<m≤1010。

输入样例:
复制代码
3
4 9
5 10
42 9999999967
输出样例:
复制代码
6
1
9999999966

解题思路:

gcd(a,m)== gcd(a+x,m) = d;

由于d为最大公约数所哟 a /= d,x/=d,m/=d后: a+x 与m互质(且x<m)可以转换为a~a+m-1中与m互质的个数。用数轴表述:

(m~a+m-1) % m == (0~a-1) % m;

问题转换为0-m-1中与m互质的个数,又因为0,m-1都与m不互质所以相当于去m的欧拉函数。

欧拉函数:

参考代码:

cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;
LL T,a,m;

LL gcd(LL a,LL b)
{
    return b ? gcd(b,a % b) : a;
}

LL ula(LL n)
{
    LL ans = n;
    for(int i=2;i<=n/i;i++)
        if(n%i==0)
        {
            ans = ans / i * (i-1);
            while(n%i==0) n/=i;
        }
        
    if(n>1) ans = ans / n * (n-1);
    return ans;
}

int main()
{
    cin>>T;
    while(T -- )
    {
        cin>>a>>m;
        
        m /= gcd(a,m);
        
        cout<<ula(m)<<endl;    
    }
    return 0;
}
相关推荐
老鼠只爱大米5 小时前
LeetCode经典算法面试题 #46:全排列(回溯、交换、剪枝等五种实现方案详细解析)
算法·leetcode·剪枝·回溯·全排列·stj算法
Dovis(誓平步青云)5 小时前
《滑动窗口算法:从 “暴力遍历” 到 “线性高效” 的思维跃迁》
运维·服务器·数据库·算法
一只小小的芙厨5 小时前
AT_tkppc3_d 巨大チェスボード 题解
c++·题解
我在人间贩卖青春5 小时前
C++之继承与派生类的关系
c++·向上造型·向下造型
Trouvaille ~5 小时前
【Linux】应用层协议设计实战(二):Jsoncpp序列化与完整实现
linux·运维·服务器·网络·c++·json·应用层
_OP_CHEN6 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
天天爱吃肉82186 小时前
【跨界封神|周杰伦×王传福(陶晶莹主持):音乐创作与新能源NVH测试,底层逻辑竟完全同源!(新人必看入行指南)】
python·嵌入式硬件·算法·汽车
im_AMBER6 小时前
Leetcode 114 链表中的下一个更大节点 | 删除排序链表中的重复元素 II
算法·leetcode
EmbedLinX6 小时前
嵌入式之协议解析
linux·网络·c++·笔记·学习
xhbaitxl6 小时前
算法学习day38-动态规划
学习·算法·动态规划