深入理解JVM后端优化技术-锁粗化(Lock Coarsening)

锁粗化(Lock Coarsening/Lock Merging)是JIT编绎器对内部锁的具体实现所做的一种优化。

相关系列

深入理解jvm执行引擎-CSDN博客

深入理解JVM后端优化技术-方法内联-CSDN博客

深入理解JVM后端优化技术-逃逸分析(Escape Analysis)-CSDN博客

深入理解JVM后端优化技术-锁消除(Lock Elision)-CSDN博客

相关JVM设置

锁粗化默认是开启的。如果要关闭这个特性,我们可以在Java程序的启动命令行中添加虚拟机参数"-XX:-EliminateLocks"(开启则可以使用虚拟机参数"-XX:+EliminateLocks")。

定义

看上图,对于相邻的几个同步块如果使用同一个锁实例,那么JIT编绎器会将这些同步块合并成一个大的同步块,从而避免一个线程反复申请、释放锁所导致的开销。

注意事项

但是,锁粗化很有可能会导致一个线程持有锁的时间变长,从而使得同步在该锁之上的其它线程在申请锁时的等待时间变长。看上图,第一个同步块和第二个同步块开始之间时间间隙中,其它线程本来是机会获取获得monitorX的,但是经过锁粗化之后由于临界区的长度变长,这些线程在申请monitorX时所需的等待时间也变长了。所以,锁粗化不会应用到循环体内的相邻的同步块。

案例分析

java 复制代码
package com.dzend.mall.order;

import java.util.Random;

public class LockCoarseningTest {

    private final Random random = new Random();

    public void genIQ(){        
        int iq1 =randomIQ();
        int iq2=randomIQ();
        int iq3=randomIQ();
        act(iq1,iq2,iq3);
    }

    private void act(int iq1,int iq2,int iq3){
        System.out.printf("iq1="+iq1 +";iq2="+iq2+";iq3="+iq3);
    }

    public int randomIQ(){
        return (int)Math.round(random.nextGaussian()*15+100);
    }
}

执行流程分析

genIQ方法连续调用randomIQ方法来生成3个符合正态分布的随机智商。在genIQ方法被执行次数达到JVM设置的阈值时,就会触发JIT编绎器对其进行一系列的优化。

1、JIT编绎器会把randomIQ方法内联(Inline)到genIQ中,把randomIQ中的代码指令复制到genIQ方法体中。

2、Random.nextGaussian是一个同步方法,由于Random实例random可能被多个线程共享,JIT编绎器无法对Random.nextGaussian方法本身执行锁消除优化,导致被内联到genIQ方法中的Rand.nextGaussian方法相当一个random引导的同步块。

3、经过以上流程优化过后,就会执行锁粗化。

相关推荐
Diligent_lvan2 小时前
GC安全点导致停顿时间过长的案例
jvm·g1·垃圾收集·安全点
2301_762317946 小时前
JVM常见面试题
jvm
半聋半瞎7 小时前
【进程和线程】(面试高频考点)
java·jvm·面试
一桶11 小时前
金融级JVM深度调优实战的经验和技巧
jvm
狂奔小菜鸡11 小时前
Java运行时数据区
java·jvm·后端
白晨并不是很能熬夜13 小时前
【JVM】字节码指令集
java·开发语言·汇编·jvm·数据结构·后端·javac
钢板兽15 小时前
Java后端高频面经——JVM、Linux、Git、Docker
java·linux·jvm·git·后端·docker·面试
Anarkh_Lee19 小时前
图解JVM - 13.垃圾回收器
java·jvm·后端
吃海鲜的骆驼20 小时前
JVM_八股&场景题
jvm
阿坨1 天前
JVM G1垃圾回收器详细解析
jvm