机器学习基础入门(一)(机器学习定义及分类)

机器学习定义

给予计算机无需特意带有目的性编程便有学习能力的算法

深度学习算法

主要有监督学习非监督学习两类

监督学习(supervised learning)

定义

1、学习由x映射到y的映射关系

2、主动给予 机器学习算法正确示例,算法通过示例来学习映射关系

举例

1、给邮件判断是否是垃圾邮件

2、给音频输出音频的文本

3、给英语输出西班牙语

4、给广告以及用户信息,判断用户是否会点击这个广告

5、给图像以及其他传感器信息,判断汽车以及其他物体的位置

6、给不同房子大小对应的价格(如下图),判断朋友房子(已知大小)对应的价格

总结

给算法正确的x、y值 ,算法能够学习**x->y的映射关系,**从而此后我们给x便可以知道y的值,

这就是监督学习算法

监督学习算法主要由两种类型**:1、回归 2、分类**

非监督学习(unsupervised learning)

定义

1、数据仅仅有x输入,并没有输出标签y

2、非监督算法没有特定的正确输出

3、算法要主动研究数据分布的结构特点等

举例

1、聚类模型:谷歌新闻推荐

概述:如果我们看一篇有关熊猫、双胞胎的文章,谷歌新闻会很自然的给你推荐其他有熊猫和双胞胎关键字的新闻。本质上是因为算法将这些新闻归为一类,而事先我们并没与规定要根据哪些词将文章归类。

流程:算法主动学习文章标题中的重点关键字---->根据关键字将数万计的新闻分成数万计的类型---->在用户搜索时将同种类型新闻同步展示

核心:工作人员并没有告诉算法哪些是关键字,也没有说要分为几类,在没有监督的情况下算法要自己去学习这些知识

2、聚类模型:客户分类

概述:根据一些指标将用户呈现在空间中的不同位置,算法自己学习将客户分为几类,并判断哪一类的客户会订阅我的专栏(嘻嘻)

流程:算法主动学习用户所在的位置---->自己确定要将用户分为几类---->根据函数等数学方法将其分为几类

核心:工作人员并没有告诉算法要分为几类,在没有监督的情况下算法要自己去确定要分为几类,并成功分类

(下图中的客户就将被分为三类)

总结

监督算法主要有三类: 1、聚类 2、异常值检测 3、降维

上面这三类算法特点都是:没有人类监督 的情况下,算法要自己挖掘数据的特点 从而总结出一些数据的特性 ,来进行任务处理

总结

机器学习:让算法拥有类似于人类的学习能力,能够不靠人类手动操作自动能够学习一些知识,并代替人类完成一些工作。

机器学习算法分为:一、监督学习 二、非监督学习

监督学习典型算法:回归、分类

非监督学习典型算法:聚类、降维

本篇文章如果能帮助到大家,大家可以点点赞、收收藏呀~

相关推荐
说私域6 小时前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
千里马也想飞6 小时前
汉语言文学《朝花夕拾》叙事艺术研究论文写作实操:AI 辅助快速完成框架 + 正文创作
人工智能
玉梅小洋6 小时前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程
肾透侧视攻城狮6 小时前
《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》
人工智能·深度学习·计算机视觉模快·支持的数据集类型·常用变换方法分类·图像分类流程实战·视觉模快高级功能
一战成名9966 小时前
AI 模型持续集成流水线:CANN 支持的 DevOps 最佳实践
人工智能·ci/cd·devops
23遇见6 小时前
AI视角下的 CANN 仓库架构全解析:高效计算的核心
人工智能
有趣的杰克6 小时前
开源|macOS 菜单栏 AI 启动器 GroAsk:⌥Space 一键直达 ChatGPT / Claude / Gemini
人工智能·macos·chatgpt
yumgpkpm6 小时前
预测:2026年大数据软件+AI大模型的发展趋势
大数据·人工智能·算法·zookeeper·kafka·开源·cloudera
星爷AG I6 小时前
11-2 距离知觉(AGI基础理论)
人工智能·agi
算法狗26 小时前
大模型面试题:在混合精度训练中如何选择合适的精度
人工智能·深度学习·机器学习·语言模型