【架构-8】Lambda和Kappa架构

Lambda架构?

Lambda架构(三层架构):

(1)将数据处理分为实时和离线两部分。离线部分通过批量计算处理数据,实时部分则通过增加追加方式将数据合并到批处理中。

(2)批处理和增量处理独立存在,适合处理大数据量的场景。

(3)适用于离线批处理和增量处理场景,如离线数据分析、报表生成等。

批处理层:存储数据集。

【MapReduce】【Spark】

加速层:处理最近的增量数据流。

【Spark Streaming】【Storm】

服务层:合并批视图和实时视图中的结果数据集到最终数据集。

【Redis】【MySQL】【HBase】【Hive】

优点:(1)容错性好(2)灵活度高(3)易伸缩易扩展

缺点:(1)全场景覆盖带来的编码开销(2)重新部署和迁移成本高

应用实例

Kappa架构?

Kappa架构(二层架构):

(1)以流处理为主的数据分析架构,实时层流式处理输入数据,生成实时视图,服务层接受用户请求,查询实时视图,响应用户请求。

(2)流式处理,适合处理实时数据。

(3)适用于实时性要求高的场景,如金融、物流等领域的实时监控、预警等。

实时层:处理输入数据,生成实时视图。

【采用Apache Kafka回访数据】

【采用Flink或Spark Streaming处理】

服务层:使用实时视图中的结果数据集响应用户请求。

【一般使用数据仓库或数据湖中的缓存或存储作为服务层】

优点:离线和实时处理代码统一,将实时和离线统一起来,方便进行数据处理;具有低延迟、高吞吐量、高可扩展性等优点。

缺点:计算能力相对较弱,难以即时响应;过度依赖特定组件(如Redis和HBase)。

应用实例

Lambda和Kappa架构的区别?


相关推荐
2501_9447114320 分钟前
前端向架构突围系列 - 工程化(五):企业级脚手架的设计与落地
前端·架构
明月醉窗台1 小时前
Ryzen AI --- AMD XDNA架构的部署框架
人工智能·opencv·目标检测·机器学习·计算机视觉·架构
拆房老料2 小时前
实战复盘:自研 Office / PDF 文档处理平台的高坑预警与 AI Agent 时代架构思考
人工智能·架构·pdf·编辑器·开源软件
Zilliz Planet2 小时前
熠智AI+Milvus:从Embedding 到数据处理、问题重写,电商AI客服架构怎么搭?
人工智能·架构·embedding·milvus
DianSan_ERP3 小时前
从数据到决策:京东接口如何驱动供应链数字化升级
大数据·运维·服务器·数据库·人工智能·性能优化·架构
min1811234563 小时前
AI从工具向自主决策者的身份转变
大数据·网络·人工智能·架构·流程图
Dxy12393102163 小时前
PostgreSQL与MySQL有哪些区别:从架构到应用场景的深度解析
mysql·postgresql·架构
许泽宇的技术分享3 小时前
当 AI Agent 遇上 .NET:一场关于智能体架构的技术探险
人工智能·架构·.net
终端域名4 小时前
如何保障网络架构变革下物联网设备的安全?
网络·物联网·架构·区块链
七夜zippoe5 小时前
NumPy向量化计算实战:从入门到精通的性能优化指南
python·性能优化·架构·numpy·广播机制·ufunc