爬取东方财富股票代码

我们打开东方财富网站:http://quote.eastmoney.com/stocklist.html

假如懒得爬,也可以用现成的股票数据源:https://stockapi.com.cn

这展示了所有股票信息,不过需要我们分页去爬取

我们可以查询具体的html代码:

bash 复制代码
<div class="stock-info" data-spm="2">
    <div class="stock-bets">
        <h1>
            <a class="bets-name" href="/stock/sz300388.html">
            国祯环保 (<span>300388</span>)
            </a>
            <span class="state f-up">已休市 2017-09-29  15:00:03
            </span>
        </h1>
        <div class="price s-stop ">
                        <strong  class="_close">--</strong>
            <span>--</span>
            <span>--</span>
                    </div>
        <div class="bets-content">
            
                                            <div class="line1">
                    <dl><dt>今开</dt><dd class="">19.92</dd></dl>
                    <dl><dt>成交量</dt><dd>8917手</dd></dl>
                    <dl><dt>最高</dt><dd class="s-up">20.15</dd></dl>
                    <dl><dt>涨停</dt><dd class="s-up">21.96</dd></dl>
                    <dl><dt>内盘</dt><dd>4974手</dd></dl>
                    <dl><dt>成交额</dt><dd>1786.10万</dd></dl>
                    <dl><dt>委比</dt><dd>-50.69%</dd></dl>
                    <dl><dt>流通市值</dt><dd>59.98亿</dd></dl>
                    <dl><dt class="mt-1">市盈率<sup>MRQ</sup></dt><dd>50.59</dd></dl>
                    <dl><dt>每股收益</dt><dd>0.20</dd></dl>
                    <dl><dt>总股本</dt><dd>3.06亿</dd></dl>
                    <div class="clear"></div>
                </div>
                <div class="line2">
                    <dl><dt>昨收</dt><dd>19.96</dd></dl>
                    <dl><dt>换手率</dt><dd>0.30%</dd></dl>
                    <dl><dt>最低</dt><dd class="s-down">19.92</dd>
                    </dl>
                    <dl><dt>跌停</dt><dd class="s-down">
                        17.96</dd></dl>
                    <dl><dt>外盘</dt><dd>3943手</dd></dl>
                    <dl><dt>振幅</dt><dd>1.15%</dd></dl>
                    <dl><dt>量比</dt><dd>0.11</dd></dl>
                    <dl><dt>总市值</dt><dd>61.35亿</dd></dl>
                    <dl><dt>市净率</dt><dd>3.91</dd></dl>
                    <dl><dt>每股净资产</dt><dd>5.14</dd></dl>
                    <dl><dt>流通股本</dt><dd>2.99亿</dd></dl>
                </div>
         <div class="clear"></div>
        </div>
    </div>

发现股票名称在class="bets-name"的a标签中,其他的数据都在dt和dd标签中

bash 复制代码
import requests
from bs4 import BeautifulSoup
import re
 
#优化,可以减少程序判断编码所花费的时间
def getHTMLText(url, code='UTF-8'):
    try:
        r = requests.get(url)
        r.raise_for_status()
        r.encoding = code
        return r.text
    except:
        return ""
 
 
def getStockList(url, stockList):
    html = getHTMLText(url, 'GB2312')
    soup = BeautifulSoup(html, 'html.parser')
    aInformaton = soup.find_all('a')
    for ainfo in aInformaton:
        try:
            stockList.append(re.findall(r'[s][hz]\d{6}', ainfo.attrs['href'])[0])
        except:
            continue
 
 
def getStockInformation(detailUrl, outputFile, stockList):
    count = 0
    for name in stockList:
        count = count + 1
        stockUrl = detailUrl + name + '.html'
        html = getHTMLText(stockUrl)
        try:
            if html == "":
                continue
            stockDict = {}
            soup = BeautifulSoup(html, 'html.parser')
            stockinfo = soup.find('div', attrs={'class': 'stock-bets'})
            stockname = stockinfo.find('a', attrs={'class': 'bets-name'})
            # 当标签内部还有标签时,利用text可以得到正确的文字,利用string可能会产生None
            stockDict["股票名称"] = stockname.text.split()[0]
            stockKey = stockinfo.find_all('dt')
            stockValue = stockinfo.find_all('dd')
            for i in range(len(stockKey)):
                stockDict[stockKey[i].string] = stockValue[i].string
            #\r移动到行首,end=""不进行换行
            print("\r{:5.2f}%".format((count / len(stockList) * 100)), end='')
            #追加写模式'a'
            f = open(outputFile, 'a')
            f.write(str(stockDict) + '\n')
            f.close()
        except:
            print("{:5.2f}%".format((count / len(stockList) * 100)), end='')
            continue
 
 
def main():
    listUrl = 'http://quote.eastmoney.com/stocklist.html'
    detailUrl = 'https://gupiao.baidu.com/stock/'
    outputFile = 'C:/Users/Administrator/Desktop/out.txt'
    stockList = []
    getStockList(listUrl, stockList)
    getStockInformation(detailUrl, outputFile, stockList)
main()
 

方法2.采用Scrapy框架和正则表达式库

(1)建立工程和Spider模板(保存为stocks.py文件)

在命令行中进入:E:\PythonProject\BaiduStocks

输入:scrapy startproject BaiduStocks 建立了scrapy工程

输入:scrapy genspider stocks baidu.com 建立spider模板,baidu.com是指爬虫限定的爬取域名,在stocks.py文件删去即可

(2)编写spider爬虫(即stocks.py文件)

采用css选择器,可以返回选择的标签元素,通过方法extract()可以提取标签元素为字符串从而实现匹配正则表达式的处理

正则表达式详解:

bash 复制代码
<a class="bets-name" href="/stock/sz300388.html">
            国祯环保 (<span>300388</span>)
            </a>

re.findall('.(', stockname)[0].split()[0] + '('+re.findall('>.<', stockname)[0][1:-1]+')'

匹配结果:国祯环保(300388)

因为'('为正则表达式语法里的基本符号,所以需要转义

正则表达式从每行开始匹配,匹配之后返回[' 国祯环保 ('],采用split将空白字符分割,返回['国祯环保','(']

bash 复制代码
# -*- coding: utf-8 -*-
import scrapy
import re
 
class StocksSpider(scrapy.Spider):
    name = 'stocks'
    start_urls = ['http://quote.eastmoney.com/stocklist.html']
 
    def parse(self, response):
        fo=open(r'E:\PythonProject\BaiduStocks\oo.txt','a')
        #fo.write(str(response.css('a').extract()))
        count=0
        for href in response.css('a').extract():
            try:
                if count == 300:
                    break
                count=count+1
                stockname=re.findall(r'[s][hz]\d{6}',href)[0]
                stockurl='https://gupiao.baidu.com/stock/' + stockname + '.html'
                #fo.write(stockurl)
                yield scrapy.Request(url= stockurl,headers={"User-Agent":"Chrome/10"} ,callback=self.stock_parse)
            except:
                continue
        pass
 
 
    def stock_parse(self,response):
        ffo=open(r'E:\PythonProject\BaiduStocks\stockparse.txt','a')
        stockDict={}
        #提取标签中class="stock-bets"的标签元素
        stockinfo=response.css('.stock-bets')
        #将提取出来的标签转化为字符串列表,然后取第一个
        stockname=stockinfo.css('.bets-name').extract()[0]
        #ffo.write(stockname)
        keyList=stockinfo.css('dt').extract()
        #ffo.write(str(keyList))
        valueList=stockinfo.css('dd').extract()
        stockDict['股票名称'] = re.findall('.*\(', stockname)[0].split()[0] + '('+re.findall('\>.*\<', stockname)[0][1:-1]+')'
        for i in range(len(keyList)):
            stockkey=re.findall(r'>.*</dt>',keyList[i])[0][1:-5]
            stockvalue=re.findall(r'>.*</dd>',valueList[i])[0][1:-5]
            stockDict[stockkey]=stockvalue
        yield stockDict
 
 
 

(3)编写PipeLine(即pipelines.py文件)

系统自动生成了Item处理类BaiduStocksPipeline,我们不采用系统生成,新建一个BaiduStocksinfoPipeline类,并书写Item处理函数

bash 复制代码
# -*- coding: utf-8 -*-
 
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
 
 
class BaidustocksPipeline(object):
    def process_item(self, item, spider):
        return item
 
 
class BaidustocksinfoPipeline(object):
    #爬虫打开时执行
    def open_spider(self,spider):
        self.f=open(r'E:\PythonProject\BaiduStocks\BaiduStocks\asdqwe.txt','a')
 
    # 爬虫关闭时执行
    def close_spider(self,spider):
        self.f.close()
        
    #处理Item项
    def process_item(self,item,spider):
        try:
            self.f.write(str(item)+'\n')
        except:
            pass
        return item

此时要修改配置文件setting.py文件

bash 复制代码
ITEM_PIPELINES = {
    'BaiduStocks.pipelines.BaidustocksinfoPipeline': 300,
}

(4)运行爬虫:scrapy crawl stocks

相关推荐
远望清一色1 分钟前
基于MATLAB身份证号码识别
开发语言·图像处理·算法·matlab
生信与遗传解读3 分钟前
基于python的线性代数相关计算
python·线性代数·机器学习
NMBG229 分钟前
[JAVAEE] 面试题(四) - 多线程下使用ArrayList涉及到的线程安全问题及解决
java·开发语言·面试·java-ee·intellij-idea
Py小趴15 分钟前
Python自学之Colormaps指南
开发语言·python·数据可视化
晒足以百八十20 分钟前
基于Python 和 pyecharts 制作招聘数据可视化分析大屏
开发语言·python·信息可视化
敲代码不忘补水40 分钟前
生成式GPT商品推荐:精准满足用户需求
开发语言·python·gpt·产品运营·产品经理
孤客网络科技工作室1 小时前
Python Plotly 库使用教程
python·信息可视化·plotly
悟解了1 小时前
《数据可视化技术》上机报告
python·信息可视化·数据分析
机器学习之心1 小时前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
清风fu杨柳1 小时前
centos7 arm版本编译qt5.6.3详细说明
开发语言·arm开发·qt