MapReduce过程解析

一、Map过程解析

  1. Read阶段:MapTask通过用户编写的RecordReader,从输入的InputSplit中解析出一个个key/value。
  2. Map阶段:将解析出的key/value交给用户编写的Map()函数处理,并产生一系列的key/value。
  3. Collect阶段:在用户编写的map()函数中,数据处理完成后,一般会调用outputCollector.collect()输出结果,在该函数内部,它会将生成的key/value分片(通过调用partitioner),并写入一个环形缓冲区(该环形缓冲区的大小为100M)
  4. Spill阶段:即"溢写",当缓冲区快要溢出时(默认达到缓冲区大小的80%),会在本地文件系统创建一个溢写文件,将该缓冲区的数据写入到这个文件。
  5. Combine阶段:当所有的数据处理完成以后,MapTask会对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

将数据写入本地磁盘前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

写入磁盘之前,线程会根据 ReduceTask 的数量,将数据分区,一个 Reduce 任务对应一个分区的数据。

这样做的目的是为了避免有些 Reduce 任务分配到大量数据,而有些 Reduce 任务分到很少的数据,甚至没有分到数据的尴尬局面。

如果此时设置了 Combiner ,将排序后的结果进行 Combine 操作,这样做的目的是尽可能少地执行数据写入磁盘的操作。

二、ReduceTask

  1. Copy阶段:Reduce会从各个MapTask上远程复制一片数据(每个MapTask传来的数据都是有序的),并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中;
  2. Merge阶段:在远程复制数据的同时,ReduceTask会启动两个后台进程,分别对内存和磁盘上的文件进行合并,以防止内存使用过多或者磁盘文件过多;
  3. Sort阶段:用户编写reduce()方法,输入数据是按key进行聚集的一组数据
  4. Reduce阶段:对排序后的键值对调用reduce()方法,键相等的键值对调用一次reduce()方法,每次调用会长生零个或者多个键值对,最后把这些输出的键值对亵渎到hdfs上;
  5. Write阶段:reduce()函数将计算结果写到HDFS上。
相关推荐
旋风小飞棍1 分钟前
如何在sheel中运行spark
大数据·开发语言·scala
爱吃香菜---www3 分钟前
spark-cache模式
大数据·分布式·spark
依年南台8 分钟前
Hadoop的目录结构和组成
大数据·hadoop·分布式
唐天下文化39 分钟前
居然智家亮相全零售AI火花大会 AI大模型赋能家居新零售的进阶之路
大数据·人工智能·零售
gaosushexiangji1 小时前
应用探析|千眼狼PIV测量系统在职业病防治中的应用
大数据·人工智能·科技·数码相机
189228048611 小时前
NY182NY183美光固态颗粒NY186NY188
大数据·网络·科技
爱吃香菜---www3 小时前
spark-standalone
大数据·分布式·spark
依年南台3 小时前
安装Hadoop并运行WordCount程序
大数据·hadoop
TDengine (老段)3 小时前
基于 TSBS 标准数据集下 TimescaleDB、InfluxDB 与 TDengine 性能对比测试报告
java·大数据·开发语言·数据库·时序数据库·tdengine·iotdb
TDengine (老段)3 小时前
TDengine 在金融领域的应用
大数据·数据库·物联网·金融·时序数据库·tdengine·涛思数据