YOLOv8摄像头实时目标检测搭建笔记

1.实现原理

  1. 搭建RTMP流媒体服务器
  2. 手机安装推流软件直播推送到流媒体服务器
  3. YOLOv8从RTMP服务器拉流获取,并实现实时目标检测

2.搭建SRS流媒体服务器

安装地址: Build | SRS (ossrs.net)

3.手机摄像头直播推流

下载app: 易推流

4.查看rtmp服务器

5.执行yolov8脚本程序

python 复制代码
import cv2
import subprocess
from ultralytics import YOLO

# 载入 YOLOv8 模型
model = YOLO('model/yolov8n.pt')

# 获取本地视频内容
# cap = cv2.VideoCapture("video/source.flv")

# 通过cv2中的类获取视频流操作对象cap
rtmp_str = 'rtmp://192.168.2.114/live/videoName'
cap = cv2.VideoCapture(rtmp_str)

# 获取原视频的宽度和高度
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))


# 设置 FFmpeg 子进程,用于推流
# 修改为您的 NGINX RTMP 服务器地址
rtmp_url = 'rtmp://192.168.2.114/live/stream'
command = ['ffmpeg',
          '-y',
          '-f', 'rawvideo',
          '-vcodec', 'rawvideo',
          '-pix_fmt', 'bgr24',
          '-s', "{}x{}".format(original_width, original_height),
          '-r', str(fps),
          '-i', '-',
          '-c:v', 'libx264',
          '-pix_fmt', 'yuv420p',
          '-preset', 'ultrafast',
          '-f', 'flv',
          rtmp_url]

# 启动 FFmpeg 进程
proc = subprocess.Popen(command, stdin=subprocess.PIPE)

# 循环遍历视频帧
while cap.isOpened():
   # 从视频中读取一帧
   success, frame = cap.read()

   if success:
       # 对帧运行 YOLOv8 推理
       results = model(frame)

       # 在帧上可视化结果
       annotated_frame = results[0].plot()

       # 将处理后的帧写入 FFmpeg 进程
       proc.stdin.write(annotated_frame.tobytes())

       # 显示带有标注的帧
       cv2.imshow("YOLOv8 推理", annotated_frame)

       # 如果按下 'q' 键,则中断循环
       if cv2.waitKey(1) & 0xFF == ord("q"):
           break
   else:
       break

# 释放视频捕获对象
cap.release()

# 关闭 FFmpeg 进程
proc.stdin.close()
proc.wait()

# 关闭显示窗口
cv2.destroyAllWindows()

6.执行程序

相关推荐
埃菲尔铁塔_CV算法14 分钟前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】33 分钟前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_452600691 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
右恩1 小时前
AI大模型重塑软件开发:流程革新与未来展望
人工智能
图片转成excel表格2 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
ApiHug2 小时前
ApiSmart x Qwen2.5-Coder 开源旗舰编程模型媲美 GPT-4o, ApiSmart 实测!
人工智能·spring boot·spring·ai编程·apihug
哇咔咔哇咔3 小时前
【科普】简述CNN的各种模型
人工智能·神经网络·cnn
李歘歘3 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习