YOLOv8摄像头实时目标检测搭建笔记

1.实现原理

  1. 搭建RTMP流媒体服务器
  2. 手机安装推流软件直播推送到流媒体服务器
  3. YOLOv8从RTMP服务器拉流获取,并实现实时目标检测

2.搭建SRS流媒体服务器

安装地址: Build | SRS (ossrs.net)

3.手机摄像头直播推流

下载app: 易推流

4.查看rtmp服务器

5.执行yolov8脚本程序

python 复制代码
import cv2
import subprocess
from ultralytics import YOLO

# 载入 YOLOv8 模型
model = YOLO('model/yolov8n.pt')

# 获取本地视频内容
# cap = cv2.VideoCapture("video/source.flv")

# 通过cv2中的类获取视频流操作对象cap
rtmp_str = 'rtmp://192.168.2.114/live/videoName'
cap = cv2.VideoCapture(rtmp_str)

# 获取原视频的宽度和高度
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))


# 设置 FFmpeg 子进程,用于推流
# 修改为您的 NGINX RTMP 服务器地址
rtmp_url = 'rtmp://192.168.2.114/live/stream'
command = ['ffmpeg',
          '-y',
          '-f', 'rawvideo',
          '-vcodec', 'rawvideo',
          '-pix_fmt', 'bgr24',
          '-s', "{}x{}".format(original_width, original_height),
          '-r', str(fps),
          '-i', '-',
          '-c:v', 'libx264',
          '-pix_fmt', 'yuv420p',
          '-preset', 'ultrafast',
          '-f', 'flv',
          rtmp_url]

# 启动 FFmpeg 进程
proc = subprocess.Popen(command, stdin=subprocess.PIPE)

# 循环遍历视频帧
while cap.isOpened():
   # 从视频中读取一帧
   success, frame = cap.read()

   if success:
       # 对帧运行 YOLOv8 推理
       results = model(frame)

       # 在帧上可视化结果
       annotated_frame = results[0].plot()

       # 将处理后的帧写入 FFmpeg 进程
       proc.stdin.write(annotated_frame.tobytes())

       # 显示带有标注的帧
       cv2.imshow("YOLOv8 推理", annotated_frame)

       # 如果按下 'q' 键,则中断循环
       if cv2.waitKey(1) & 0xFF == ord("q"):
           break
   else:
       break

# 释放视频捕获对象
cap.release()

# 关闭 FFmpeg 进程
proc.stdin.close()
proc.wait()

# 关闭显示窗口
cv2.destroyAllWindows()

6.执行程序

相关推荐
中国胖子风清扬5 分钟前
Spring AI Alibaba + Ollama 实战:基于本地 Qwen3 的 Spring Boot 大模型应用
java·人工智能·spring boot·后端·spring·spring cloud·ai
A7bert7779 分钟前
【YOLOv5seg部署RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·深度学习·yolo·目标检测
不会计算机的g_c__b13 分钟前
AI Agent:从概念到实践,解析智能体的未来趋势与挑战
人工智能
serve the people26 分钟前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_199327 分钟前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥28 分钟前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥30 分钟前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi
Leinwin32 分钟前
Microsoft 365 Copilot:更“懂你”的AI助手
人工智能·microsoft·copilot
后端小肥肠38 分钟前
从图文到视频,如何用Coze跑通“小红书儿童绘本”的商业闭环?
人工智能·aigc·coze
飞睿科技43 分钟前
ESP Audio Effects音频库迎来专业升级,v1.2.0 新增动态控制核心
人工智能·物联网·ffmpeg·智能家居·语音识别·乐鑫科技·esp