YOLOv8摄像头实时目标检测搭建笔记

1.实现原理

  1. 搭建RTMP流媒体服务器
  2. 手机安装推流软件直播推送到流媒体服务器
  3. YOLOv8从RTMP服务器拉流获取,并实现实时目标检测

2.搭建SRS流媒体服务器

安装地址: Build | SRS (ossrs.net)

3.手机摄像头直播推流

下载app: 易推流

4.查看rtmp服务器

5.执行yolov8脚本程序

python 复制代码
import cv2
import subprocess
from ultralytics import YOLO

# 载入 YOLOv8 模型
model = YOLO('model/yolov8n.pt')

# 获取本地视频内容
# cap = cv2.VideoCapture("video/source.flv")

# 通过cv2中的类获取视频流操作对象cap
rtmp_str = 'rtmp://192.168.2.114/live/videoName'
cap = cv2.VideoCapture(rtmp_str)

# 获取原视频的宽度和高度
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))


# 设置 FFmpeg 子进程,用于推流
# 修改为您的 NGINX RTMP 服务器地址
rtmp_url = 'rtmp://192.168.2.114/live/stream'
command = ['ffmpeg',
          '-y',
          '-f', 'rawvideo',
          '-vcodec', 'rawvideo',
          '-pix_fmt', 'bgr24',
          '-s', "{}x{}".format(original_width, original_height),
          '-r', str(fps),
          '-i', '-',
          '-c:v', 'libx264',
          '-pix_fmt', 'yuv420p',
          '-preset', 'ultrafast',
          '-f', 'flv',
          rtmp_url]

# 启动 FFmpeg 进程
proc = subprocess.Popen(command, stdin=subprocess.PIPE)

# 循环遍历视频帧
while cap.isOpened():
   # 从视频中读取一帧
   success, frame = cap.read()

   if success:
       # 对帧运行 YOLOv8 推理
       results = model(frame)

       # 在帧上可视化结果
       annotated_frame = results[0].plot()

       # 将处理后的帧写入 FFmpeg 进程
       proc.stdin.write(annotated_frame.tobytes())

       # 显示带有标注的帧
       cv2.imshow("YOLOv8 推理", annotated_frame)

       # 如果按下 'q' 键,则中断循环
       if cv2.waitKey(1) & 0xFF == ord("q"):
           break
   else:
       break

# 释放视频捕获对象
cap.release()

# 关闭 FFmpeg 进程
proc.stdin.close()
proc.wait()

# 关闭显示窗口
cv2.destroyAllWindows()

6.执行程序

相关推荐
搬砖者(视觉算法工程师)1 分钟前
语义分割:基于 TensorFlow 对 FCN 与迁移学习的探究
人工智能
cookqq11 分钟前
基于Spring AI+本地大模型+MongoDB实现私密化与记忆能力-企业级免费大模型应用
人工智能·mongodb·spring
云卓SKYDROID16 分钟前
无人机飞行模式详解
人工智能·无人机·高科技·云卓科技·技术解析、
数字游民952731 分钟前
小程序上新,猜对了么更新110组素材
人工智能·ai·小程序·ai绘画·自媒体·数字游民9527
泰迪智能科技44 分钟前
分享|联合编写教材入选第二批“十四五”职业教育国家规划教材名单
大数据·人工智能
模型时代1 小时前
热力学计算技术或将大幅降低AI图像生成能耗
人工智能
企业老板ai培训1 小时前
从九尾狐AI实战案例拆解AI短视频获客的架构设计:智能矩阵如何提升企业效率?
人工智能
龙腾AI白云1 小时前
知识图谱如何在制造业实际落地应用
人工智能·知识图谱
力学与人工智能1 小时前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
娟宝宝萌萌哒1 小时前
智能体设计模式重点
人工智能·设计模式