YOLOv8摄像头实时目标检测搭建笔记

1.实现原理

  1. 搭建RTMP流媒体服务器
  2. 手机安装推流软件直播推送到流媒体服务器
  3. YOLOv8从RTMP服务器拉流获取,并实现实时目标检测

2.搭建SRS流媒体服务器

安装地址: Build | SRS (ossrs.net)

3.手机摄像头直播推流

下载app: 易推流

4.查看rtmp服务器

5.执行yolov8脚本程序

python 复制代码
import cv2
import subprocess
from ultralytics import YOLO

# 载入 YOLOv8 模型
model = YOLO('model/yolov8n.pt')

# 获取本地视频内容
# cap = cv2.VideoCapture("video/source.flv")

# 通过cv2中的类获取视频流操作对象cap
rtmp_str = 'rtmp://192.168.2.114/live/videoName'
cap = cv2.VideoCapture(rtmp_str)

# 获取原视频的宽度和高度
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))


# 设置 FFmpeg 子进程,用于推流
# 修改为您的 NGINX RTMP 服务器地址
rtmp_url = 'rtmp://192.168.2.114/live/stream'
command = ['ffmpeg',
          '-y',
          '-f', 'rawvideo',
          '-vcodec', 'rawvideo',
          '-pix_fmt', 'bgr24',
          '-s', "{}x{}".format(original_width, original_height),
          '-r', str(fps),
          '-i', '-',
          '-c:v', 'libx264',
          '-pix_fmt', 'yuv420p',
          '-preset', 'ultrafast',
          '-f', 'flv',
          rtmp_url]

# 启动 FFmpeg 进程
proc = subprocess.Popen(command, stdin=subprocess.PIPE)

# 循环遍历视频帧
while cap.isOpened():
   # 从视频中读取一帧
   success, frame = cap.read()

   if success:
       # 对帧运行 YOLOv8 推理
       results = model(frame)

       # 在帧上可视化结果
       annotated_frame = results[0].plot()

       # 将处理后的帧写入 FFmpeg 进程
       proc.stdin.write(annotated_frame.tobytes())

       # 显示带有标注的帧
       cv2.imshow("YOLOv8 推理", annotated_frame)

       # 如果按下 'q' 键,则中断循环
       if cv2.waitKey(1) & 0xFF == ord("q"):
           break
   else:
       break

# 释放视频捕获对象
cap.release()

# 关闭 FFmpeg 进程
proc.stdin.close()
proc.wait()

# 关闭显示窗口
cv2.destroyAllWindows()

6.执行程序

相关推荐
WebGoC开发者12 小时前
【备赛指导】佛山市青少年科技创新大赛暨佛山市青少年人工智能科创节 智趣AI竞技赛 流程详解
人工智能·经验分享·科技·ai·青少年科技竞赛
大千AI助手12 小时前
模糊集合理论:从Zadeh奠基到现代智能系统融合
人工智能·机器学习·集合·模糊理论·大千ai助手·模糊集合·fuzzysets
数据门徒13 小时前
《人工智能现代方法(第4版)》 第7章 逻辑智能体 学习笔记
人工智能·笔记·学习
生成论实验室13 小时前
周林东的生成论入门十讲 · 第八讲 生成的世界——物理学与生物学新视角
人工智能·科技·神经网络·信息与通信·几何学
东方不败之鸭梨的测试笔记13 小时前
测试工程师如何利用AI大模型?
人工智能
智能化咨询13 小时前
(68页PPT)埃森哲XX集团用户主数据治理项目汇报方案(附下载方式)
大数据·人工智能
说私域13 小时前
分享经济应用:以“开源链动2+1模式AI智能名片S2B2C商城小程序”为例
人工智能·小程序·开源
工业机器视觉设计和实现13 小时前
我的第三个cudnn程序(cifar10改cifar100)
人工智能·深度学习·机器学习
熊猫钓鱼>_>13 小时前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
Altair澳汰尔13 小时前
成功案例丨仿真+AI技术为快消包装行业赋能提速:基于 AI 的轻量化设计节省数十亿美元
人工智能·ai·仿真·cae·消费品·hyperworks·轻量化设计