论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?

iclr 2024 reviewer 评分 6668

1 intro

  • 大型语言模型(LLMs)已显示出在上下文中学习的能力
    • 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出
  • 然而,现行的上下文学习(ICL)范式仍存在以下明显的缺点
    • 最终性能极度敏感于选定的演示示例,到目前为止,还没有公认的完美演示选择标准
    • 制作演示可能是劳动密集型的,麻烦的甚至是禁止性的
      • 在许多 ICL 场景中,演示不仅包含输入和相应的标签,还包括由注释者生成的推理过程
      • 对于许多任务(例如,摘要),人类难以表达决策背后的推理过程。
  • 论文提问:我们真的需要人类为 LLMs 提供演示吗,还是 LLMs 可以自己生成演示?
    • ------>提出了自我反思提示策略(简称 SEC)
      • 不使用手工制作的示例作为演示,而是要求 LLMs 首先自行创建演示,基于这些演示生成最终输出
      • SEC 有效地解决了 ICL 的缺点:它不仅可以节省制作演示的繁重劳动,更重要的是,消除了人工制作提示的不稳定性

2 方法

2.1 Vanilla SEC

2.2 COT-SEC

原理和2.1是一样的,之不多这边让大模型同时给出推导和答案的样例

3 实验

3.1 不同数据集希望LLM 生成的案例数量

3.2 结果比较

3.2 生成的案例数量的影响

3.3 prompt举例

4 reviewer 意见整理

4.1 reviewer1 (6)

4.2 reviewer2(6)

4.3 reviewer3(6)

4.4 reviewer4(8)

相关推荐
张较瘦_1 天前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
CV-杨帆1 天前
论文阅读:arxiv 2025 OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
论文阅读
七元权1 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_111 天前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
噜~噜~噜~2 天前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_2 天前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_3 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola3 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_5 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙5 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程