论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?

iclr 2024 reviewer 评分 6668

1 intro

  • 大型语言模型(LLMs)已显示出在上下文中学习的能力
    • 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出
  • 然而,现行的上下文学习(ICL)范式仍存在以下明显的缺点
    • 最终性能极度敏感于选定的演示示例,到目前为止,还没有公认的完美演示选择标准
    • 制作演示可能是劳动密集型的,麻烦的甚至是禁止性的
      • 在许多 ICL 场景中,演示不仅包含输入和相应的标签,还包括由注释者生成的推理过程
      • 对于许多任务(例如,摘要),人类难以表达决策背后的推理过程。
  • 论文提问:我们真的需要人类为 LLMs 提供演示吗,还是 LLMs 可以自己生成演示?
    • ------>提出了自我反思提示策略(简称 SEC)
      • 不使用手工制作的示例作为演示,而是要求 LLMs 首先自行创建演示,基于这些演示生成最终输出
      • SEC 有效地解决了 ICL 的缺点:它不仅可以节省制作演示的繁重劳动,更重要的是,消除了人工制作提示的不稳定性

2 方法

2.1 Vanilla SEC

2.2 COT-SEC

原理和2.1是一样的,之不多这边让大模型同时给出推导和答案的样例

3 实验

3.1 不同数据集希望LLM 生成的案例数量

3.2 结果比较

3.2 生成的案例数量的影响

3.3 prompt举例

4 reviewer 意见整理

4.1 reviewer1 (6)

4.2 reviewer2(6)

4.3 reviewer3(6)

4.4 reviewer4(8)

相关推荐
MhZhou04128 小时前
Virtual Sparse Convolution for Multimodal 3D Object Detection 论文阅读
论文阅读
0x2118 小时前
[论文阅读]Certifiably Robust RAG against Retrieval Corruption
论文阅读
何大春1 天前
【对话推荐系统综述】Broadening the View: Demonstration-augmented Prompt Learning for CR
论文阅读·人工智能·深度学习·语言模型·prompt·论文笔记
☞黑心萝卜三条杠☜1 天前
后门攻击仓库 backdoor attack
论文阅读·人工智能
FrancisQiu2 天前
LLM时代的小模型思考:《What is the Role of Small Models in the LLM Era: A Survey》论文笔记
论文阅读
带电的小王2 天前
Token:SentencePiece论文阅读--大模型中主流的分词算法
论文阅读·人工智能·算法·语言模型·大语言模型基础
Zhouqi_Hua3 天前
LLM论文笔记 19: On Limitations of the Transformer Architecture
论文阅读·人工智能·笔记·深度学习·语言模型·自然语言处理·transformer
栀子清茶3 天前
MobileMamba: Lightweight Multi-Receptive Visual Mamba Network——论文笔记
论文阅读
江木1236 天前
论文阅读和代码实现EfficientDet(BiFPN)
论文阅读
Ayakanoinu6 天前
【论文阅读】Universal Adversarial Attacks for Visual Odometry Systems
论文阅读