论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?

iclr 2024 reviewer 评分 6668

1 intro

  • 大型语言模型(LLMs)已显示出在上下文中学习的能力
    • 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出
  • 然而,现行的上下文学习(ICL)范式仍存在以下明显的缺点
    • 最终性能极度敏感于选定的演示示例,到目前为止,还没有公认的完美演示选择标准
    • 制作演示可能是劳动密集型的,麻烦的甚至是禁止性的
      • 在许多 ICL 场景中,演示不仅包含输入和相应的标签,还包括由注释者生成的推理过程
      • 对于许多任务(例如,摘要),人类难以表达决策背后的推理过程。
  • 论文提问:我们真的需要人类为 LLMs 提供演示吗,还是 LLMs 可以自己生成演示?
    • ------>提出了自我反思提示策略(简称 SEC)
      • 不使用手工制作的示例作为演示,而是要求 LLMs 首先自行创建演示,基于这些演示生成最终输出
      • SEC 有效地解决了 ICL 的缺点:它不仅可以节省制作演示的繁重劳动,更重要的是,消除了人工制作提示的不稳定性

2 方法

2.1 Vanilla SEC

2.2 COT-SEC

原理和2.1是一样的,之不多这边让大模型同时给出推导和答案的样例

3 实验

3.1 不同数据集希望LLM 生成的案例数量

3.2 结果比较

3.2 生成的案例数量的影响

3.3 prompt举例

4 reviewer 意见整理

4.1 reviewer1 (6)

4.2 reviewer2(6)

4.3 reviewer3(6)

4.4 reviewer4(8)

相关推荐
一碗白开水一5 小时前
【论文阅读】Far3D: Expanding the Horizon for Surround-view 3D Object Detection
论文阅读·人工智能·深度学习·算法·目标检测·计算机视觉·3d
张较瘦_5 小时前
[论文阅读] 人工智能 + 软件工程 | TDD痛点破解:LLM自动生成测试骨架靠谱吗?静态分析+专家评审给出答案
论文阅读·人工智能·软件工程
张较瘦_9 小时前
[论文阅读] 人工智能 + 软件工程 | 首个仓库级多任务调试数据集!RepoDebug揭秘LLM真实调试水平
论文阅读·人工智能
CV-杨帆9 小时前
论文阅读:ACL 2023 MEETINGQA: Extractive Question-Answering on Meeting Transcripts
论文阅读
大嘴带你水论文1 天前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
Chandler_Song2 天前
【设计模式】依赖注入和工厂模式
论文阅读
张较瘦_2 天前
[论文阅读] 软件工程 - 需求工程 | 2012-2019年移动应用需求工程研究趋势:需求分析成焦点,数据源却藏着大问题?
论文阅读·软件工程·需求分析
沉默媛3 天前
【论文阅读】InnerGS: Internal Scenes Rendering via Factorized 3D Gaussian Splatting
论文阅读·3dgs·内部精细结果重建
czijin3 天前
【论文阅读】Security of Language Models for Code: A Systematic Literature Review
论文阅读·人工智能·安全·语言模型·软件工程
安逸sgr3 天前
Zotero白嫖腾讯云翻译
论文阅读·云计算·腾讯云