排序 “贰” 之选择排序


目录

​编辑

[1. 选择排序基本思想](#1. 选择排序基本思想)

[2. 直接选择排序](#2. 直接选择排序)

[2.1 实现步骤](#2.1 实现步骤)

[2.2 代码示例](#2.2 代码示例)

[2.3 直接选择排序的特性总结](#2.3 直接选择排序的特性总结)

[3. 堆排序](#3. 堆排序)

[3.1 实现步骤](#3.1 实现步骤)

[3.2 代码示例](#3.2 代码示例)

[3.3 堆排序的特性总结](#3.3 堆排序的特性总结)


1. 选择排序基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2. 直接选择排序

2.1 实现步骤

1.从待排序序列中选择最小(或最大)的元素,将其与序列中的第一个元素交换位置。

2.在剩余的未排序序列中选择最小(或最大)的元素,将其与序列中的第二个元素交换位置。

3.重复上述步骤,每次在剩余未排序序列中选择最小(或最大)的元素,放到已排序部分的末尾,直到所有元素都被排序。

2.2 代码示例

cpp 复制代码
//交换
void Swap(int* p, int* q)
{
	int tmp = *p;
	*p = *q;
	*q = tmp;
}

//选择排序
void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;

	while (begin < end)
	{
		//定义最小值和最大值的下标
		int mini = begin, maxi = begin;

		//每次找到未排序部分的最小值和最大值的下标
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}

		//将找到的最小元素与未排序部分的第一个元素交换位置
		Swap(&a[begin], &a[mini]);

		//如果最大元素的下标和begin位置重复了,就更新最大元素的下标
		if (maxi == begin)
		{
			maxi = mini;
		}

		//将找到的最大元素与未排序部分的最后一个元素交换位置
		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}

//打印
void PrintSort(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}

//测试
int main()
{
	int a[] = { 13, 5, 7, 19, 0, 12, 4, 8, 8, 16 };
	SelectSort(a, sizeof(a) / sizeof(int));
	PrintSort(a, sizeof(a) / sizeof(int));

	return 0;
}

2.3 直接选择排序的特性总结

  1. 直接选择排序思考非常好理解,但是效率不是很好。因此,选择排序通常不适用于大规模数据集,但在少量元素的情况下可能是一种不错的选择。

  2. 时间复杂度:选择排序每次从未排序部分选择最小(或最大)的元素放到已排序部分的末尾,因此它的时间复杂度为O(N^2),其中n是数组的大小。即使在最好的情况下,选择排序的时间复杂度也是O(N^2)。

  3. 空间复杂度:O(1)

  4. 稳定性:不稳定

3. 堆排序

3.1 实现步骤

堆是一种特殊的完全二叉树,分为最大堆和最小堆。需要注意的是排升序要建大堆,排降序建小堆。

基本思想:

  1. 将待排序的序列构建成一个最大堆。
  2. 从最大堆中取出堆顶元素(最大元素),将其与堆中最后一个元素交换位置,然后将剩余元素重新调整成大堆。
  3. 重复上述步骤,直到所有元素都被取出,最终得到一个有序序列。

实现步骤:

  1. 构建最大堆:从最后一个非叶子节点开始,依次向上调整使得每个节点都满足最大堆的性质。
  2. 将堆顶元素与堆中最后一个元素交换位置,然后将剩余元素重新调整成大堆。
  3. 重复上述步骤,直到所有元素都被取出,最终得到一个有序序列。

3.2 代码示例

cpp 复制代码
//交换
void Swap(int* p, int* q)
{
	int tmp = *p;
	*p = *q;
	*q = tmp;
}

//向下调整
void AdjustDown(int* a, int size, int parent)
{
	int child = parent * 2 + 1;

	while (child < size)
	{
		// 假设左孩子小,如果假设错了,就更新一下
		if (child + 1 < size && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

// 堆排序
void HeapSort(int* a, int n)
{
	// O(N)
	// 构建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}

	// O(N*logN)
	//依次取出堆顶元素,调整
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

//打印
void PrintSort(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}

//测试
int main()
{
	int a[] = { 1, 5, 7, 9, 0, 2, 4, 8, 8, 6 };
	HeapSort(a, sizeof(a) / sizeof(int));
	PrintSort(a, sizeof(a) / sizeof(int));

	return 0;
}

3.3 堆排序的特性总结

  1. 堆排序虽然效率高,但在数据量较小的情况下可能不如其他简单的排序算法,因为构建堆的过程比较耗时。
  2. 时间复杂度:O(N*logN),其中N是待排序序列的长度。
  3. 空间复杂度:堆排序是一种原地排序算法,不需要额外的空间来存储临时数据,只需要在原数组上进行操作,所以它的空间复杂度为O(1)
  4. 稳定性:不稳定,即相同元素的相对位置在排序后可能发生变化。
相关推荐
无限大.28 分钟前
冒泡排序(结合动画进行可视化分析)
算法·排序算法
走向自由1 小时前
Leetcode 最长回文子串
数据结构·算法·leetcode·回文·最长回文
nuo5342021 小时前
The 2024 ICPC Kunming Invitational Contest
c语言·数据结构·c++·算法
特种加菲猫1 小时前
初阶数据结构之队列的实现
开发语言·数据结构·笔记
编程探索者小陈2 小时前
【优先算法】专题——双指针
数据结构·算法·leetcode
Sunyanhui12 小时前
力扣 三数之和-15
数据结构·算法·leetcode
@小博的博客2 小时前
C++初阶学习第十三弹——容器适配器和优先级队列的概念
开发语言·数据结构·c++·学习
Mr__vantasy3 小时前
数据结构(初阶6)---二叉树(遍历——递归的艺术)(详解)
c语言·开发语言·数据结构·算法·leetcode
IT 青年3 小时前
数据结构 (6)栈的应用举例
数据结构
敲键盘的老乡3 小时前
堆优化版本的Prim
数据结构·c++·算法·图论·最小生成树