深度学习基础之《TensorFlow框架(14)—TFRecords》

一、什么是TFRecords文件

1、TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件

2、使用步骤

(1)获取数据

(2)将数据填入到Example协议内存块(protocol buffer)

(3)将协议内存块序列化为字符串,并且通过tf.io.TFRecordWriter写入到TFRecords文件

3、文件格式*.tfrecords

二、Example结构解析

1、Example

python 复制代码
features {
	feature {
		key: "image"
		value {
			bytes_list {
				value: "\377\374\375\372\356\351\365\31\350\356\352\350"
			}
		}
	}
	feature {
		key: "lable"
		value {
			int64_list {
				value: 9
			}
		}
	}
}

特征值 - image - 3072字节

目标值 - label - 1个字节

说明:

(1)tf.train.Example

协议内存块(protocol buffer)(协议内存块包含了字段features)

(2)features

包含了feature字段

(3)feature

中包含要写入的数据、并指明数据类型

2、相关对象

tf.train.Example(features=None)

说明:

(1)写入tfrecords文件

(2)features:tf.train.Features类型的特征实例

(3)return:example格式协议块

tf.train.Features(feature=Nona)

说明:

(1)构建每个样本的信息键值对

(2)feature:字段数据,key为要保存的名字,value为tf.train.Feature实例

(3)return:Features实例

tf.train.Feature(options)

说明:

(1)options

bytes_list=tf.train.BytesList(value=[Bytes])

int64_list=tf.train.Int64List(value=[Value])

float_list=tf.train.FloatList(value=[Value])

(2)支持存入的类型如下

tf.train.BytesList(value=[Bytes])

tf.train.Int64List(value=[Value])

tf.train.FloatList(value=[Value])

3、一个样本的对象

python 复制代码
example = tf.train.Example(features=tf.train.Features(feature={"image":tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])"label":tf.train.Feature(int64_list=tf.train.Int64List(value=[label])))}))

三、CIFAR-10数据存入TFRecords文件

四、读取TFRecords文件API

五、读取CIFAR的TFRecords文件

相关推荐
余炜yw26 分钟前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐43 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
967744 分钟前
对抗样本存在的原因
深度学习
YRr YRr1 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
静静的喝酒2 小时前
深度学习笔记之BERT(二)BERT精简变体:ALBERT
深度学习·bert·albert
麦麦大数据2 小时前
Python棉花病虫害图谱系统CNN识别+AI问答知识neo4j vue+flask深度学习神经网络可视化
人工智能·python·深度学习
谢眠3 小时前
深度学习day3-自动微分
python·深度学习·机器学习
z千鑫3 小时前
【人工智能】深入理解PyTorch:从0开始完整教程!全文注解
人工智能·pytorch·python·gpt·深度学习·ai编程
YRr YRr3 小时前
深度学习:神经网络的搭建
人工智能·深度学习·神经网络
爱喝热水的呀哈喽3 小时前
torch张量与函数表达式写法
人工智能·pytorch·深度学习