深度学习基础之《TensorFlow框架(14)—TFRecords》

一、什么是TFRecords文件

1、TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件

2、使用步骤

(1)获取数据

(2)将数据填入到Example协议内存块(protocol buffer)

(3)将协议内存块序列化为字符串,并且通过tf.io.TFRecordWriter写入到TFRecords文件

3、文件格式*.tfrecords

二、Example结构解析

1、Example

python 复制代码
features {
	feature {
		key: "image"
		value {
			bytes_list {
				value: "\377\374\375\372\356\351\365\31\350\356\352\350"
			}
		}
	}
	feature {
		key: "lable"
		value {
			int64_list {
				value: 9
			}
		}
	}
}

特征值 - image - 3072字节

目标值 - label - 1个字节

说明:

(1)tf.train.Example

协议内存块(protocol buffer)(协议内存块包含了字段features)

(2)features

包含了feature字段

(3)feature

中包含要写入的数据、并指明数据类型

2、相关对象

tf.train.Example(features=None)

说明:

(1)写入tfrecords文件

(2)features:tf.train.Features类型的特征实例

(3)return:example格式协议块

tf.train.Features(feature=Nona)

说明:

(1)构建每个样本的信息键值对

(2)feature:字段数据,key为要保存的名字,value为tf.train.Feature实例

(3)return:Features实例

tf.train.Feature(options)

说明:

(1)options

bytes_list=tf.train.BytesList(value=[Bytes])

int64_list=tf.train.Int64List(value=[Value])

float_list=tf.train.FloatList(value=[Value])

(2)支持存入的类型如下

tf.train.BytesList(value=[Bytes])

tf.train.Int64List(value=[Value])

tf.train.FloatList(value=[Value])

3、一个样本的对象

python 复制代码
example = tf.train.Example(features=tf.train.Features(feature={"image":tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])"label":tf.train.Feature(int64_list=tf.train.Int64List(value=[label])))}))

三、CIFAR-10数据存入TFRecords文件

四、读取TFRecords文件API

五、读取CIFAR的TFRecords文件

相关推荐
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡3 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权3 天前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计