深度学习基础之《TensorFlow框架(14)—TFRecords》

一、什么是TFRecords文件

1、TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件

2、使用步骤

(1)获取数据

(2)将数据填入到Example协议内存块(protocol buffer)

(3)将协议内存块序列化为字符串,并且通过tf.io.TFRecordWriter写入到TFRecords文件

3、文件格式*.tfrecords

二、Example结构解析

1、Example

python 复制代码
features {
	feature {
		key: "image"
		value {
			bytes_list {
				value: "\377\374\375\372\356\351\365\31\350\356\352\350"
			}
		}
	}
	feature {
		key: "lable"
		value {
			int64_list {
				value: 9
			}
		}
	}
}

特征值 - image - 3072字节

目标值 - label - 1个字节

说明:

(1)tf.train.Example

协议内存块(protocol buffer)(协议内存块包含了字段features)

(2)features

包含了feature字段

(3)feature

中包含要写入的数据、并指明数据类型

2、相关对象

tf.train.Example(features=None)

说明:

(1)写入tfrecords文件

(2)features:tf.train.Features类型的特征实例

(3)return:example格式协议块

tf.train.Features(feature=Nona)

说明:

(1)构建每个样本的信息键值对

(2)feature:字段数据,key为要保存的名字,value为tf.train.Feature实例

(3)return:Features实例

tf.train.Feature(options)

说明:

(1)options

bytes_list=tf.train.BytesList(value=[Bytes])

int64_list=tf.train.Int64List(value=[Value])

float_list=tf.train.FloatList(value=[Value])

(2)支持存入的类型如下

tf.train.BytesList(value=[Bytes])

tf.train.Int64List(value=[Value])

tf.train.FloatList(value=[Value])

3、一个样本的对象

python 复制代码
example = tf.train.Example(features=tf.train.Features(feature={"image":tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])"label":tf.train.Feature(int64_list=tf.train.Int64List(value=[label])))}))

三、CIFAR-10数据存入TFRecords文件

四、读取TFRecords文件API

五、读取CIFAR的TFRecords文件

相关推荐
Coding茶水间35 分钟前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Niuguangshuo3 小时前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
haiyu_y3 小时前
Day 46 TensorBoard 使用介绍
人工智能·深度学习·神经网络
不惑_4 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo4 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
人工智能培训5 小时前
DNN案例一步步构建深层神经网络(3)
人工智能·深度学习·神经网络·大模型·dnn·具身智能·智能体
youngfengying5 小时前
先验知识融入深度学习
人工智能·深度学习·先验知识
A林玖5 小时前
【深度学习】目标检测
人工智能·深度学习·目标检测
代码洲学长5 小时前
一、RNN基本概念与数学原理
人工智能·rnn·深度学习
A林玖5 小时前
【深度学习】 循环神经网络
人工智能·rnn·深度学习