yolov5 自训练pt模型转onnx,再转rknn,并部署 注意事项

yolov5 部署到rk3588 教程来自

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上------从训练到部署全过程_yolov5 rknn-CSDN博客

1.通过android studio 部署代码在rk3588板子上运行代码

项目来源

rknn-toolkit2/rknpu2/examples/rknn_yolov5_android_apk_demo at master · rockchip-linux/rknn-toolkit2 (github.com)

在这个教程中

2.yolov5版本和onnx版本必须一致

3.激活函数

根据此教程中的yolov5最好是修改为rule激活函数所训练的,yolov5更换激活函数教程:

更换YOLOv5激活函数_yolov5中silu改成relu-CSDN博客

4.在上文的教程中,test.py文件里的量化不可以关闭, anchors需要修改为训练模型的python代码里 anchors

如果是rk3588板子则记得修改test.py 中的

rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]],target_platform='rk3588')

anchors 在test.py文件的 yolov5_post_process(input_data) 函数

5. 在android studio的项目中同样也要修改anchors

post_process.cc 这个文件中,在211行左右,修改anchors

例如:

int anchor0[6] = {25, 59, 18, 99, 57, 76};

int anchor1[6] = {32, 164, 62, 217, 147, 165};

int anchor2[6] = {85, 388, 179, 457, 421, 368};

6.除了第一个教程里所说的test.py里需要修改CLASS分类,我们部署到android studio 的项目也需要修改CLASS参数

post_process.cc 文件第29行左右

define OBJ_CLASS_NUM 1

相关推荐
Debroon3 小时前
用FastAPI封装Qwen云端API,本机Postman测试,再用Django做前端界面调用
人工智能
格林威4 小时前
常规环形光源在工业视觉检测上的应用
人工智能·数码相机·计算机视觉·视觉检测·工业相机·工业光源·环形光源
FreeBuf_5 小时前
从“策略对抗”到“模型对抗”:朴智平台如何重塑金融风控新范式?
大数据·人工智能
GJGCY7 小时前
金融智能体的技术底座解析:AI Agent如何实现“认知+执行”闭环?
人工智能·经验分享·ai·金融·自动化
koo3648 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究8 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究8 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波8 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii10 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节
数字冰雹10 小时前
数字孪生技术 重构 智能仓储新生态
人工智能·重构