yolov5 自训练pt模型转onnx,再转rknn,并部署 注意事项

yolov5 部署到rk3588 教程来自

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上------从训练到部署全过程_yolov5 rknn-CSDN博客

1.通过android studio 部署代码在rk3588板子上运行代码

项目来源

rknn-toolkit2/rknpu2/examples/rknn_yolov5_android_apk_demo at master · rockchip-linux/rknn-toolkit2 (github.com)

在这个教程中

2.yolov5版本和onnx版本必须一致

3.激活函数

根据此教程中的yolov5最好是修改为rule激活函数所训练的,yolov5更换激活函数教程:

更换YOLOv5激活函数_yolov5中silu改成relu-CSDN博客

4.在上文的教程中,test.py文件里的量化不可以关闭, anchors需要修改为训练模型的python代码里 anchors

如果是rk3588板子则记得修改test.py 中的

rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]],target_platform='rk3588')

anchors 在test.py文件的 yolov5_post_process(input_data) 函数

5. 在android studio的项目中同样也要修改anchors

post_process.cc 这个文件中,在211行左右,修改anchors

例如:

int anchor0[6] = {25, 59, 18, 99, 57, 76};

int anchor1[6] = {32, 164, 62, 217, 147, 165};

int anchor2[6] = {85, 388, 179, 457, 421, 368};

6.除了第一个教程里所说的test.py里需要修改CLASS分类,我们部署到android studio 的项目也需要修改CLASS参数

post_process.cc 文件第29行左右

define OBJ_CLASS_NUM 1

相关推荐
Blossom.1184 分钟前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn1 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer1 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿2 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec3 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子3 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study3 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉