yolov5 自训练pt模型转onnx,再转rknn,并部署 注意事项

yolov5 部署到rk3588 教程来自

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上------从训练到部署全过程_yolov5 rknn-CSDN博客

1.通过android studio 部署代码在rk3588板子上运行代码

项目来源

rknn-toolkit2/rknpu2/examples/rknn_yolov5_android_apk_demo at master · rockchip-linux/rknn-toolkit2 (github.com)

在这个教程中

2.yolov5版本和onnx版本必须一致

3.激活函数

根据此教程中的yolov5最好是修改为rule激活函数所训练的,yolov5更换激活函数教程:

更换YOLOv5激活函数_yolov5中silu改成relu-CSDN博客

4.在上文的教程中,test.py文件里的量化不可以关闭, anchors需要修改为训练模型的python代码里 anchors

如果是rk3588板子则记得修改test.py 中的

rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]],target_platform='rk3588')

anchors 在test.py文件的 yolov5_post_process(input_data) 函数

5. 在android studio的项目中同样也要修改anchors

post_process.cc 这个文件中,在211行左右,修改anchors

例如:

int anchor0[6] = {25, 59, 18, 99, 57, 76};

int anchor1[6] = {32, 164, 62, 217, 147, 165};

int anchor2[6] = {85, 388, 179, 457, 421, 368};

6.除了第一个教程里所说的test.py里需要修改CLASS分类,我们部署到android studio 的项目也需要修改CLASS参数

post_process.cc 文件第29行左右

define OBJ_CLASS_NUM 1

相关推荐
点云SLAM3 分钟前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员10 分钟前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay11 分钟前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全18 分钟前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙28 分钟前
MinIO 对象存储系统架构图集
人工智能·llm·minio
汗流浃背了吧,老弟!31 分钟前
什么是ResNet
人工智能·深度学习
哥布林学者37 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (三)语言模型
深度学习·ai
小途软件39 分钟前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
人工智能培训1 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心1 小时前
人工智能要学习的课程有哪些?
人工智能·学习