yolov5 自训练pt模型转onnx,再转rknn,并部署 注意事项

yolov5 部署到rk3588 教程来自

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上------从训练到部署全过程_yolov5 rknn-CSDN博客

1.通过android studio 部署代码在rk3588板子上运行代码

项目来源

rknn-toolkit2/rknpu2/examples/rknn_yolov5_android_apk_demo at master · rockchip-linux/rknn-toolkit2 (github.com)

在这个教程中

2.yolov5版本和onnx版本必须一致

3.激活函数

根据此教程中的yolov5最好是修改为rule激活函数所训练的,yolov5更换激活函数教程:

更换YOLOv5激活函数_yolov5中silu改成relu-CSDN博客

4.在上文的教程中,test.py文件里的量化不可以关闭, anchors需要修改为训练模型的python代码里 anchors

如果是rk3588板子则记得修改test.py 中的

rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]],target_platform='rk3588')

anchors 在test.py文件的 yolov5_post_process(input_data) 函数

5. 在android studio的项目中同样也要修改anchors

post_process.cc 这个文件中,在211行左右,修改anchors

例如:

int anchor0[6] = {25, 59, 18, 99, 57, 76};

int anchor1[6] = {32, 164, 62, 217, 147, 165};

int anchor2[6] = {85, 388, 179, 457, 421, 368};

6.除了第一个教程里所说的test.py里需要修改CLASS分类,我们部署到android studio 的项目也需要修改CLASS参数

post_process.cc 文件第29行左右

define OBJ_CLASS_NUM 1

相关推荐
FL16238631293 小时前
无人机视角农田焚烧秸秆检测数据集VOC+YOLO格式3245张2类别
yolo
Lsx_3 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan3 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao3 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司3 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星3 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃3 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao3 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯3 小时前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能
楚兴3 小时前
MacBook M1 安装 OpenClaw 完整指南
人工智能·后端