MTK MFNR

一、MFNR 简介

二、MFNR 开关与决策
三、MFNR 相关的adb 命令
四、MFNR log 分析
五 参考文献

一、MFNR 简介

MFNR : Multiple Frame Noise Reduction

MFLL : Multiple Frame Low Light

BSS : Best Select Shot
MFNR 跟 MFLL 是两个功能一致,名称不同的简称,是MTK 推出的YUV domain 多帧降噪的算法。

MFNR 是在 P2_CaputureNode 中 CaptureFeaturePipe 的路径,多帧的raw 首先在rootnode 中做 bss,同时会做 recorder 动作,然后依次进入到 P2ANode 做 raw2yuv ,产生的yuv等image,送到 MultiFrameNode(挂载 MFNR 算法)中进行多帧降噪处理,产生一张降噪后的YUV;如果还挂在其他的单帧YUV算法,则送YUVNode 处理,最终送到MDPNode 做crop ,resize处理.
大致流程如下:

Raws--> RootNode(BSS)-->Raws-->P2A(Raw2Yuv)-->YUVs-->MultiFrameNode(MFNR)-->YUV-->YUVNode-->YUV-->MDPNode-->Yuv

二、MFNR 开关与决策

2.1 MFNR 开关设置

开关控制在:MTK_CAM_MFB_SUPPORT

代码路径:
/device/*/ProjectConfig.mk

如果支持,默认建议设置为 3

MTK_CAM_MFB_SUPPORT =3

复制代码
 0: 关 MFLL 
 1:开 MFLL
 2:开 AIS 
 3:开 MFLL 和AIS
  • 1.不支持MFNR时,请在 app 中设置

MTK_MFNR_FEATURE_MFB_MODE 为 MTK_MFNR_FEATURE_MFB_OFF

  • 2.支持MFNR 时,请在 app 中设置

MTK_MFNR_FEATURE_MFB_MODE 为 MTK_MFNR_FEATURE_MFB_AUTO,由 CUST_MFLL_AUTO_MODE 决策走哪个模式

  • 3.当支持AIS时,可以使用下面二者任一种

1.MTK_MFNR_FEATURE_AIS_MODE = MTK_MFNR_FEATURE_AIS_ON

2.MTK_MFNR_FEATURE_MFB_MODE = MTK_MFNR_FEATURE_MFB_AIS

  • 4.当前面的meta确认为非 OFF 状态,则去判断tuning设置的threshold 是否满足,(mfll_iso_th 决策是否走MFNR)。

三、MFNR 相关的adb 命令

1.强制开、关 MFNR

adb shell setprop vendor.mfll.force 1 // 开 :1 、 关:0

2. dump MFNR 各阶段的图片

adb shell setprop vendor.mfll.dump.all 1

路径:/data/vendor/camera_dump

3.开MFNR 的log

adb shell setprop vendor.mfll.log_level 3

4.dump MFNR 需要的RaW 跟YUV 图

adb shell setprop vendor.debug.camera.p2.dump 1

5.dump bss 之前的RAW和RRZO

adb shell setprop vendor.debug.camera.bss.dump 1

四、MFNR log 分析

Log 关键字

log关键字:
MFNRPlugin|capture req|capture intent: 2|connect call|MfllCore

connect call|capture req|capture intent: 2|mfll_iso_th.*enablemfb|Mfll apply.*frames|Collected Selection|capture request frames count|BSS output|skip frame count|allocate memory|times to blend|funcprocessMemc|process.*collected request|doMsBlending|process.*callback request

关键字 解释
connect call 调用cameraservice的app 以及使用的api
capture req capture intent: 2 拍照请求帧以及intent
MFNRPlugin MFNR
origin_iso 838 当前预览iso
mfll_iso_th:100 多帧 iso 决策 ,
enableMfb:1 开启 mfll
frameCapture:4 多帧拍照张数4张
evaluateCaptureSetting 拍照决策 mainFrame:1 subFrames:3
BSS output BSS 选帧
BSS: skip frame 过BSS 算法 skip的张数
allocate memory 分配内存
collected request(0/4) MFNR 收到帧的张数
doMsBlending 多帧融合
callback request 依次 callback 每一帧
复制代码
// 水印相机
04-10 16:41:04.080150  1422  8639 I CameraService: CameraService::connect call (PID 8414 "com.tencent.zebra", camera ID 0) and Camera API version 1
// capture req#:92  capture intent: 2  第 92 帧 请求拍照
04-10 16:41:09.544396  1478  9201 D mtkcam_hal_android.device: [capture intent: 2] +  ULog#158932
04-10 16:41:09.544453  1478  9201 D mtkcam_hal_android.device: [ASettingRuleHelper::updateLogicalSetting] capture intent: 2
04-10 16:41:09.544487  1478  9201 D mtkcam_hal_android.device: [capture intent: 2] -  ULog#158933
04-10 16:41:09.545722  1478  9201 I mtkcam-FeatureSettingPolicy: [collectCaptureInfo] (0xb400007a86f4af30) capture req#:92
04-10 16:41:09.548862  1478  9201 D MFNRPlugin: (9201)[negotiate] Collected Selection:(0/0), ISP mode: 0, sensorId:0, Req(92)

//  origin_iso:838 但前预览iso
//  mfll_iso_th:100 多帧 iso 决策 ,
//  enableMfb:1 开启 mfll 
//  frameCapture:4 多帧拍照张数4张
04-10 16:41:09.549907  1478  9201 I MfllCore/Strategy: {Mfll}[queryStrategy] iso:838, origin_iso:838, mfll_iso_th:100, downscale(enabled:0, ratio:0, 16/16), finalCfg(enableMfb:1, frameCapture:4), postrefine(nr:1, mfb:1), aevc(ae:0, lcso:0)
04-10 16:41:09.550055  1478  9201 D MFNRCapability_Basic: (9201)[updateSelection] Mfll apply = 1, frames = 4
04-10 16:41:09.550410  1478  9201 D MFNRPlugin: (9201)[negotiate] Collected Selection:(1/0), ISP mode: 0, sensorId:0, Req(92)
04-10 16:41:09.550512  1478  9201 D MFNRCapability_Basic: (9201)[updateSelection] Mfll apply = 1, frames = 4
04-10 16:41:09.550784  1478  9201 D MFNRPlugin: (9201)[negotiate] Collected Selection:(2/0), ISP mode: 0, sensorId:0, Req(92)
04-10 16:41:09.550857  1478  9201 D MFNRCapability_Basic: (9201)[updateSelection] Mfll apply = 1, frames = 4
04-10 16:41:09.551145  1478  9201 D MFNRPlugin: (9201)[negotiate] Collected Selection:(3/0), ISP mode: 0, sensorId:0, Req(92)
04-10 16:41:09.551218  1478  9201 D MFNRCapability_Basic: (9201)[updateSelection] Mfll apply = 1, frames = 4

// evaluateCaptureSetting 拍照决策 mainFrame:1   subFrames:3
//BSS output  BSS 选帧
04-10 16:41:09.552314  1478  9201 D mtkcam-FeatureSettingPolicy: [evaluateCaptureSetting] capture request frames count(mainFrame:1, preCollectFrames:0, subFrames:3)
04-10 16:41:09.555439  1478  9201 D mtkcam-CaptureInFlightRequest: [insertRequest] insert capture RequestNo 92, size #:1
04-10 16:41:09.777355  1478  9373 D BssCore : (9373)[postPrepareRequests] MTK_FEATURE_BSS_PROCESS = 0, BSS output(enable bss:1) - order(0)
04-10 16:41:09.777365  1478  9373 D BssCore : (9373)[postPrepareRequests] MTK_FEATURE_BSS_PROCESS = 0, BSS output(enable bss:1) - order(3)
04-10 16:41:09.777373  1478  9373 D BssCore : (9373)[postPrepareRequests] MTK_FEATURE_BSS_PROCESS = 0, BSS output(enable bss:1) - order(1)
04-10 16:41:09.777379  1478  9373 D BssCore : (9373)[postPrepareRequests] MTK_FEATURE_BSS_PROCESS = 0, BSS output(enable bss:1) - order(2)

// BSS: skip frame  过BSS 算法 skip的张数
04-10 16:41:09.778173  1478  9373 I MtkCam/CapturePipe/RootNode: [reorder]BSS: skip frame count: 0, golden:0

// allocate memory 分配内存
04-10 16:41:09.820663  1478  9505 D MfllCore: {Mfll}[operator()] future allocate memory +

// collected request(0/4) MFNR 收到帧的张数
04-10 16:41:09.821332  1478  9379 D MFNRPlugin: (9379)[process] collected request(0/4)
04-10 16:41:09.821347  1478  9508 D MfllCore: {Mfll}[operator()] times to blend(3), MEMC instanceNum(1), threadsNum(1)
04-10 16:41:09.821375  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(0) +
04-10 16:41:09.841445  1478  9379 D MFNRPlugin: (9379)[process] collected request(1/4)
04-10 16:41:09.847348  1478  9505 D MfllCore: {Mfll}[operator()] future allocate memory -
04-10 16:41:09.863183  1478  9379 D MFNRPlugin: (9379)[process] collected request(2/4)
04-10 16:41:09.886023  1478  9379 D MFNRPlugin: (9379)[process] collected request(3/4)

// memc 过完
04-10 16:41:09.913152  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(0) -
04-10 16:41:09.913241  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(1) +
04-10 16:41:09.920605  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(1) -
04-10 16:41:09.920615  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(2) +
04-10 16:41:09.927396  1478  9508 D MfllCore: {Mfll}[operator()] funcProcessMemc(2) -

//doMsBlending 多帧融合
04-10 16:41:09.950564  1478  9510 D MfllCore: {Mfll}[doMsBlending] blending (0) ok
04-10 16:41:09.950575  1478  9510 D MfllCore: {Mfll}[doMsBlending] re-use input base buffer for 2nd blend
04-10 16:41:09.975629  1478  9510 D MfllCore: {Mfll}[doMsBlending] blending (1) ok
04-10 16:41:10.008877  1478  9510 D MfllCore: {Mfll}[doMsBlending] use working buffer as output
04-10 16:41:10.053627  1478  9510 D MfllCore: {Mfll}[doMsBlending] blending (2) ok
04-10 17:19:21.915968 13594 15334 D MfllCore: {Mfll}[doMsBlending] blending (4) ok

// callback request 依次 callback 每一帧
04-10 16:41:10.053840  1478  9379 D MFNRPlugin: (9379)[process] callback request(0/4) 0xb4000079471651a8
04-10 16:41:10.054679  1478  9379 D MFNRPlugin: (9379)[process] callback request(1/4) 0xb4000079471651a8
04-10 16:41:10.055064  1478  9379 D MFNRPlugin: (9379)[process] callback request(2/4) 0xb4000079471651a8
04-10 16:41:10.055407  1478  9379 D MFNRPlugin: (9379)[process] callback request(3/4) 0xb4000079471651a8

五 参考文献

MTK文档

参考文献:

【腾讯文档】Camera学习知识库

https://docs.qq.com/doc/DSWZ6dUlNemtUWndv

至此,本篇已结束。转载网络的文章,小编觉得很优秀,欢迎点击阅读原文,支持原创作者,如有侵权,恳请联系小编删除,欢迎您的建议与指正。同时期待您的关注,感谢您的阅读,谢谢!

相关推荐
Antonio9152 小时前
【图像处理】libtiff 的介绍与使用
图像处理
第二层皮-合肥2 小时前
图像处理中的暗场校正
图像处理·数码相机·计算机视觉
chao18984417 小时前
多光谱图像融合:IHS、PCA与小波变换的MATLAB实现
图像处理·计算机视觉·matlab
这张生成的图像能检测吗18 小时前
(论文速读)基于图像堆栈的低频超宽带SAR叶簇隐蔽目标变化检测
图像处理·人工智能·深度学习·机器学习·信号处理·雷达·变化检测
禁默1 天前
第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·机器学习·计算机视觉
Antonio9151 天前
【图像处理】tiff格式介绍
图像处理·人工智能
Antonio9151 天前
【图像处理】png 格式详解
图像处理
AndrewHZ1 天前
【图像处理基石】什么是alpha matting?
图像处理·人工智能·计算机视觉·matting·发丝分割·trimap·人像模式
LabVIEW开发2 天前
LabVIEW液位边缘检测
图像处理·计算机视觉·labview·labview知识·labview功能·labview程序
拾荒的小海螺2 天前
C#:OpenCvSharp 实现图像处理的技术指南
开发语言·图像处理·c#