快速扩散模型数值采样,近似平均方向求解器

浙大提出近似平均方向求解器,快速扩散模型数值采样

扩散模型的生成轨迹几乎位于图像空间的一个二维子空间中!于是,通过直接学习生成轨迹的平均方向,我们可以进一步减小离散误差。

论文题目:

Fast ODE-based Sampling for Diiffusion Models in Around 5 Steps

论文地址:

https://arxiv.org/abs/2312.00094

项目地址:

https://github.com/zju-pi/diff-sampler

给定噪声输入,扩散模型利用评分函数(score function)进行迭代去噪实现图像生成、音频生成、视频生成、文生图等任务。这个过程可以解释为离散求解某个随机微分方程(SDE),或是求解其对应的概率流常微分方程(PF-ODE)。

在扩散模型加速采样上,现有方法主要分为两大类。一是设计更快的数值求解器,在增加步长同时保持较小的离散误差。这些方法成功地将采样步数从 1000 减少至 20 以下。二是基于知识蒸馏,在数据分布和预先指定的噪声分布之间建立一一映射。如此,训练好的学生模型只需一步就可以实现高质量生成。

本文结合两类方法的长处,在保持较低训练开销的同时,利用蒸馏得到的知识,进一步加速扩散模型采样。

-- 提出 AMED-Solver,一种新的扩散模型 ODE 求解器,其通过学习近似平均方向来最小化离散误差。

-- 提出 AMED-Plugin,一个可以应用于各种扩散模型 ODE 求解器的插件,仅引入较小的训练开销和可忽略的采样开销。

ref

我们称离散求解过程中中间输出构成的集合 为扩散模型的采样轨迹。

扩散模型的采样轨迹虽然位于一个维度非常高(通常上千甚至上万)的空间,但其可以近似地用两个主成分来刻画,也就是说,这条轨迹几乎处在一个二维子空间上!

利用 EDM 提供的 Heun Solver[2] 进行 40 步离散采样得到 1000 条轨迹,对每条轨迹做主成分分析并提取部分主成分重构轨迹,得到的相对重构误差非常小,重构轨迹也能解释原轨迹 99% 以上的方差。

相关推荐
大山同学3 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
陈天伟教授5 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
板面华仔5 小时前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
源于花海6 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
机 _ 长6 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习
龙山云仓6 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
名为沙丁鱼的猫7299 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
香芋Yu9 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
依依yyy9 小时前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
纠结哥_Shrek10 小时前
外贸选品工程师的工作流程和方法论
python·机器学习