快速扩散模型数值采样,近似平均方向求解器

浙大提出近似平均方向求解器,快速扩散模型数值采样

扩散模型的生成轨迹几乎位于图像空间的一个二维子空间中!于是,通过直接学习生成轨迹的平均方向,我们可以进一步减小离散误差。

论文题目:

Fast ODE-based Sampling for Diiffusion Models in Around 5 Steps

论文地址:

https://arxiv.org/abs/2312.00094

项目地址:

https://github.com/zju-pi/diff-sampler

给定噪声输入,扩散模型利用评分函数(score function)进行迭代去噪实现图像生成、音频生成、视频生成、文生图等任务。这个过程可以解释为离散求解某个随机微分方程(SDE),或是求解其对应的概率流常微分方程(PF-ODE)。

在扩散模型加速采样上,现有方法主要分为两大类。一是设计更快的数值求解器,在增加步长同时保持较小的离散误差。这些方法成功地将采样步数从 1000 减少至 20 以下。二是基于知识蒸馏,在数据分布和预先指定的噪声分布之间建立一一映射。如此,训练好的学生模型只需一步就可以实现高质量生成。

本文结合两类方法的长处,在保持较低训练开销的同时,利用蒸馏得到的知识,进一步加速扩散模型采样。

-- 提出 AMED-Solver,一种新的扩散模型 ODE 求解器,其通过学习近似平均方向来最小化离散误差。

-- 提出 AMED-Plugin,一个可以应用于各种扩散模型 ODE 求解器的插件,仅引入较小的训练开销和可忽略的采样开销。

ref

我们称离散求解过程中中间输出构成的集合 为扩散模型的采样轨迹。

扩散模型的采样轨迹虽然位于一个维度非常高(通常上千甚至上万)的空间,但其可以近似地用两个主成分来刻画,也就是说,这条轨迹几乎处在一个二维子空间上!

利用 EDM 提供的 Heun Solver[2] 进行 40 步离散采样得到 1000 条轨迹,对每条轨迹做主成分分析并提取部分主成分重构轨迹,得到的相对重构误差非常小,重构轨迹也能解释原轨迹 99% 以上的方差。

相关推荐
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
薄荷很无奈2 小时前
CuML + Cudf (RAPIDS) 加速python数据分析脚本
python·机器学习·数据分析·gpu算力
Y1nhl10 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
小墙程序员13 小时前
机器学习入门(二)线性回归
机器学习
追逐☞14 小时前
机器学习(7)——K均值聚类
机器学习·均值算法·聚类
追逐☞15 小时前
机器学习(9)——随机森林
人工智能·随机森林·机器学习
云天徽上16 小时前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
硅谷秋水17 小时前
CoT-Drive:利用 LLM 和思维链提示实现自动驾驶的高效运动预测
人工智能·机器学习·语言模型·自动驾驶
IT古董17 小时前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习