快速扩散模型数值采样,近似平均方向求解器

浙大提出近似平均方向求解器,快速扩散模型数值采样

扩散模型的生成轨迹几乎位于图像空间的一个二维子空间中!于是,通过直接学习生成轨迹的平均方向,我们可以进一步减小离散误差。

论文题目:

Fast ODE-based Sampling for Diiffusion Models in Around 5 Steps

论文地址:

https://arxiv.org/abs/2312.00094

项目地址:

https://github.com/zju-pi/diff-sampler

给定噪声输入,扩散模型利用评分函数(score function)进行迭代去噪实现图像生成、音频生成、视频生成、文生图等任务。这个过程可以解释为离散求解某个随机微分方程(SDE),或是求解其对应的概率流常微分方程(PF-ODE)。

在扩散模型加速采样上,现有方法主要分为两大类。一是设计更快的数值求解器,在增加步长同时保持较小的离散误差。这些方法成功地将采样步数从 1000 减少至 20 以下。二是基于知识蒸馏,在数据分布和预先指定的噪声分布之间建立一一映射。如此,训练好的学生模型只需一步就可以实现高质量生成。

本文结合两类方法的长处,在保持较低训练开销的同时,利用蒸馏得到的知识,进一步加速扩散模型采样。

-- 提出 AMED-Solver,一种新的扩散模型 ODE 求解器,其通过学习近似平均方向来最小化离散误差。

-- 提出 AMED-Plugin,一个可以应用于各种扩散模型 ODE 求解器的插件,仅引入较小的训练开销和可忽略的采样开销。

ref

我们称离散求解过程中中间输出构成的集合 为扩散模型的采样轨迹。

扩散模型的采样轨迹虽然位于一个维度非常高(通常上千甚至上万)的空间,但其可以近似地用两个主成分来刻画,也就是说,这条轨迹几乎处在一个二维子空间上!

利用 EDM 提供的 Heun Solver[2] 进行 40 步离散采样得到 1000 条轨迹,对每条轨迹做主成分分析并提取部分主成分重构轨迹,得到的相对重构误差非常小,重构轨迹也能解释原轨迹 99% 以上的方差。

相关推荐
ChoSeitaku5 小时前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵
月下倩影时5 小时前
视觉学习篇——机器学习模型评价指标
人工智能·学习·机器学习
不去幼儿园6 小时前
【强化学习】可证明安全强化学习(Provably Safe RL)算法详细介绍
人工智能·python·算法·安全·机器学习·强化学习
月疯6 小时前
自相关实操流程
人工智能·算法·机器学习
Blossom.1188 小时前
AI Agent记忆系统深度实现:从短期记忆到长期人格的演进
人工智能·python·深度学习·算法·决策树·机器学习·copilot
爱打球的白师傅10 小时前
python机器学习工程化demo(包含训练模型,预测数据,模型列表,模型详情,删除模型)支持线性回归、逻辑回归、决策树、SVC、随机森林等模型
人工智能·python·深度学习·机器学习·flask·逻辑回归·线性回归
B站计算机毕业设计之家11 小时前
基于Python+Django+双协同过滤豆瓣电影推荐系统 协同过滤推荐算法 爬虫 大数据毕业设计(源码+文档)✅
大数据·爬虫·python·机器学习·数据分析·django·推荐算法
pen-ai11 小时前
【高级机器学习】5. Dictionary learning and Non-negative matrix factorisation
人工智能·机器学习
pen-ai12 小时前
【高级机器学习】6. 稀疏编码与正则化
人工智能·机器学习
松岛雾奈.23013 小时前
机器学习--KNN算法中的距离、范数、正则化
人工智能·算法·机器学习