使用FutureTask来提高接口的并发性能优化经验以及踩坑记录

背景:

批量数据采集接口,随着时间的推移,设备一次性上传的数据包越来越大,大到一次性需要处理64条数据,而每条数据需要花费大量的时间去处理,那么如果串行对任务进行处理的话,那么总时间就是N * 64

神操作来了:

使用FutureTask来进行并发操作

1、需要先定义一个并发处理线程池

1)注意注意,需要注意核心线程参数设置,否则会暴雷

  1. 注意注意,需要注意队列和最大线程数设置,否则会暴雷
复制代码
// 定义一个任务列表,方便后面阻塞获取线程执行的结果
List<FutureTask<SaveCollectDataReq>> taskList = new ArrayList<>(); 
for (SaveCollectDataReq saveCollectDataReq : saveCollectDatas) {
    FutureTask<SaveCollectDataReq> futureTask = new FutureTask(new BatchProduceTask(saveCollectDataReq, processOrderProduceService));
    taskList.add(futureTask);
    // 这里是将任务快速提交到线程池,并发处理
    taskAsyncExecutor.submit(futureTask);

}
for (FutureTask<SaveCollectDataReq> saveCollectDataReqFutureTask : taskList) {
    SaveCollectDataReq saveCollectDataReq = null;
    try {
        // 这里是获取并发处理的结果,方便后续的操作
        saveCollectDataReq = saveCollectDataReqFutureTask.get();
        if (Objects.isNull(saveCollectDataReq)) {
            continue;
        }
    } catch (InterruptedException | ExecutionException e) {
        log.error("数据批处理过程异常:",e);
        throw new AiipcBizException(e.getMessage());
    }
}

上面的代码上没什么坑,主要的坑在于线程池,线程的核心数、最大数、队列数以及拒绝策略,这几个参数都会影响接口的执行效率,了解一下

复制代码
CallerRunsPolicy拒绝策略,这个策略是干什么的呢,他不会像其他策略那样抛弃任务或直接报异常,他会退化成由调用者执行这个任务,坑爹的地方自己想吧。
相关推荐
无尽的大道5 小时前
深入理解 Java 阻塞队列:使用场景、原理与性能优化
java·开发语言·性能优化
loey_ln5 小时前
webpack配置和打包性能优化
前端·webpack·性能优化
郭梧悠16 小时前
HarmonyOS(57) UI性能优化
ui·性能优化·harmonyos
奈斯ing16 小时前
【Oracle篇】SQL性能优化实战案例(从15秒优化到0.08秒)(第七篇,总共七篇)
运维·数据库·sql·oracle·性能优化
青云交2 天前
大数据新视界 -- Impala 性能优化:分布式环境中的优化新视野(下)(28 / 30)
大数据·性能优化·资源管理·impala·优化策略·分布式环境·数据布局
hummhumm2 天前
第 24 章 -Golang 性能优化
java·开发语言·前端·后端·python·性能优化·golang
白茶等风121382 天前
准备阶段 Profiler性能分析工具的使用(一)
unity·性能优化
激流丶2 天前
【Redis 探秘】Redis 性能优化技巧
redis·性能优化·bootstrap
AIBigModel2 天前
LLM性能优化中的一些概念扫盲
性能优化