吴恩达2022机器学习专项课程(一)8.2 解决过拟合

目录

解决过拟合(一):增加数据

收集更多训练数据,是解决过拟合的首要方法。

解决过拟合(二):减少特征

如果收集不到更到的训练数据,则看看是否可以使用更少的特征,我们需要特征选择。

特征选择

选择合适的特征集,具体做法是根据直觉,保留你认为最有用的特征(课程专项第二部分会细讲)。

缺点

万一所有特征都是很有用的,特征选择可能会丢弃一些有用的特征。有些算法会自动选择特征集(专项课程二详细说明)。

解决过拟合(三):正则化

尽可能的缩小参数的值,例如0.000014,0.0001。

总结

解决过拟合最常用的三种方法分别是增加训练集数据,减少训练样本特征,以及使用正则化。正则化是使用最多也是效果最好的方法。

相关推荐
Mr数据杨2 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339862 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
phoenix@Capricornus3 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
zhz52144 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师4 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
田梓燊4 小时前
数学复习笔记 19
笔记·线性代数·机器学习
武科大许志伟4 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技4 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco4 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
小oo呆4 小时前
【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型
人工智能·自然语言处理