吴恩达2022机器学习专项课程(一)8.2 解决过拟合

目录

解决过拟合(一):增加数据

收集更多训练数据,是解决过拟合的首要方法。

解决过拟合(二):减少特征

如果收集不到更到的训练数据,则看看是否可以使用更少的特征,我们需要特征选择。

特征选择

选择合适的特征集,具体做法是根据直觉,保留你认为最有用的特征(课程专项第二部分会细讲)。

缺点

万一所有特征都是很有用的,特征选择可能会丢弃一些有用的特征。有些算法会自动选择特征集(专项课程二详细说明)。

解决过拟合(三):正则化

尽可能的缩小参数的值,例如0.000014,0.0001。

总结

解决过拟合最常用的三种方法分别是增加训练集数据,减少训练样本特征,以及使用正则化。正则化是使用最多也是效果最好的方法。

相关推荐
zzc9213 分钟前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
点赋科技4 分钟前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
HeteroCat11 分钟前
一周年工作总结:做了一年的AI工作我都干了什么?
人工智能
YSGZJJ24 分钟前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Guheyunyi34 分钟前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
码码哈哈爱分享34 分钟前
[特殊字符] Whisper 模型介绍(OpenAI 语音识别系统)
人工智能·whisper·语音识别
郄堃Deep Traffic40 分钟前
机器学习+城市规划第十三期:XGBoost的地理加权改进,利用树模型实现更精准的地理加权回归
人工智能·机器学习·回归·城市规划
Lucky-Niu40 分钟前
解决transformers.adapters import AdapterConfig 报错的问题
人工智能·深度学习
FserSuN1 小时前
Prompt工程学习之思维树(TOT)
人工智能·学习·prompt